New discoveries place lack of energy at the basis of Parkinson's disease

March 20, 2014

Neuroscientists Vanessa Moraïs and Bart De Strooper from VIB and KU Leuven have demonstrated how a defect in the gene Pink1 results in Parkinson's disease. By mapping this process at a molecular level, they have provided the ultimate proof that a deficient energy production process in cells can result in Parkinson's disease. These insights are so revolutionary that they have been published in the leading journal Science.

Vanessa Moraïs (VIB/KU Leuven):

"Having Parkinson's disease means that you can no longer tell your own body what to do. The hope of finding a solution to this has stimulated me for many years to unravel what goes wrong in the cells of Parkinson's patients. This research is an important step forwards."

Bart De Strooper (VIB/KU Leuven):

"Parkinson's disease is one of the research focuses in our department. It gives great satisfaction that we have unraveled a molecular process responsible for the faulty energy production process in cells of Parkinson's patients. This confirms our belief that repairing the energy production in cells is a possible therapeutic strategy."

Faulty energy production forms the basis of Parkinson's disease.

Mitochondria are cell components that produce the energy required by a cell to function. The action of these mitochondria - and therefore the energy production in cells - is disrupted in Parkinson's disease. The exact mechanism was unknown. In recent years, scientists have described various gene defects (mutations) in Parkinson's patients that result in decreased activity of the mitochondria, including a mutation in the Pink1 gene.

Molecular mechanism provides ultimate proof

Vanessa Moraïs studied the link between Pink1, mitochondria and Parkinson's disease in fruit-flies and mice with a defective Pink1 gene. These model organisms exhibited symptoms of Parkinson's disease as a result of this defect. She was able to demonstrate that the defect in Pink1 resulted in the so-called 'Complex I' - a protein complex with a crucial role in the energy production of mitochondria - not being phosphorylated adequately, resulting in decreased energy production. When Moraïs and her colleagues ensured correct phosphorylation of Complex I, the Parkinson's symptoms decreased or disappeared in mice and in patient-derived stem cell lines. The scientists thereby demonstrated that the lack of phosphorylation causes Parkinson's disease in patients with a defect Pin1 gene.

Further research in Parkinson's patients with defective Pink1 gene

This study reveals that repairing the phosphorylation of Complex I could be a treatment strategy for Parkinson's disease. The VIB scientists have already used cells from Parkinson's patients with a defective Pink1 gene to demonstrate that repairing the phosphorylation results in increased energy production. However, will this cause the symptoms of Parkinson's disease to decrease or disappear? Only tests on patients can answer this question. According to the scientists, the best strategy would be to start with the sub-group of patients with a defective Pink1 gene. But before starting clinical trials, a lot of aspects still have to be tested.
-end-


VIB (the Flanders Institute for Biotechnology)

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.