Nav: Home

New catalysts mimic human vision

March 20, 2017

Photoreceptors in vertebrates typically consist of two different, colourless parts: an organic pigment and a protein. When both pieces combine, they create a colourful, light-sensitive molecule -an iminium ion- that triggers vision upon light excitation. Inspired by this mechanism, a team of researchers at the Institute of Chemical Research of Catalonia (ICIQ) created a new family of sustainable, environmentally friendly catalysts that can be 'switched on' using purple LEDs.

Chemically modifying natural amino acid proline, chemists designed a set of organocatalysts with quite attractive properties. When the catalysts react with the substrate of the reaction, they form iminium ions, like the ones in our retinas. "This transformation entails a visual colour change. Hence, we can know when the intermediate is formed," explains Mattia Silvi, first author of the Nature Chemistry paper. "Then, we just need to activate it using a purple LED and the product of the chemical reaction will be ready in a few hours," he adds. Moreover, catalysts have been carefully tailored to induce the formation of single-handed isomers -enantiomers- of the chiral products, which are very useful for the pharmaceutical industry. In general, single enantiomers have fewer adverse effects and an improved therapeutic profile.

"Despite being a well-known mechanism in biochemistry, the photo-excitation of iminium ions hadn't been used to make chiral molecules yet," says Paolo Melchiorre, ICIQ Group Leader and ICREA Professor, who led the study. "Thanks to this novel approach, triggered by visible light, we can obtain products that were impossible to achieve using traditional thermally-activated transformations," he adds.

Another key feature of these new catalysts is their implication with sustainability. They are organic catalysts, and since they do not contain any metal, they are way cheaper and easy to handle. Besides avoiding the need for expensive palladium or ruthenium catalysts, the products of these light-triggered reactions are easier to purify. Also, these catalysts don't require thermal activation, allowing chemists to easily develop transformations at ambient temperature.

Proline-derivatives are among the most popular organocatalysts in chemistry. Hence, this new discovery could have wide implications. Extending the applications of these catalysts to other chemical transformations could reduce their environmental impact while giving access to previously unknown chiral molecules.
-end-


Institute of Chemical Research of Catalonia (ICIQ)

Related Chemistry Articles:

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
Biomimetic chemistry: Carbohydrate capture
LMU chemists have designed and synthesized a helical molecule that specifically recognizes and binds to a disaccharide consisting of two five-carbon sugar units.
Reining in soil's nitrogen chemistry
The compound urea is currently the most popular nitrogen soil fertilizer.
Taking a closer look at 'electrifying' chemistry
With the increasing availability of electrical energy from renewable sources, it will be possible in the future to drive many chemical processes using an electric current.
The changing chemistry of the Amazonian atmosphere
Researchers have been debating whether nitrogen oxides (NOx) can affect levels of OH radicals in a pristine atmosphere but quantifying that relationship has been difficult.
The chemistry of Hollywood bloodbaths (video)
Fake blood is a staple of the Halloween horror film experience, but there's no one recipe to suit every filmmaker's needs.
More Chemistry News and Chemistry Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.