Nav: Home

Mars volcano, Earth's dinosaurs went extinct about the same time

March 20, 2017

New NASA research reveals that the giant Martian shield volcano Arsia Mons produced one new lava flow at its summit every 1 to 3 million years during the final peak of activity. The last volcanic activity there ceased about 50 million years ago--around the time of Earth's Cretaceous-Paleogene extinction, when large numbers of our planet's plant and animal species (including dinosaurs) went extinct.

Located just south of Mars' equator, Arsia Mons is the southernmost member of a trio of broad, gently sloping shield volcanoes collectively known as Tharsis Montes. Arsia Mons was built up over billions of years, though the details of its lifecycle are still being worked out. The most recent volcanic activity is thought to have taken place in the caldera -- the bowl-shaped depression at the top -- where 29 volcanic vents have been identified. Until now, it's been difficult to make a precise estimate of when this volcanic field was active.

"We estimate that the peak activity for the volcanic field at the summit of Arsia Mons probably occurred approximately 150 million years ago--the late Jurassic period on Earth--and then died out around the same time as Earth's dinosaurs," said Jacob Richardson, a postdoctoral researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It's possible, though, that the last volcanic vent or two might have been active in the past 50 million years, which is very recent in geological terms."

Richardson is presenting the findings on March 20, 2017, at the Lunar and Planetary Science Conference in The Woodlands, Texas. The study also is published in Earth and Planetary Science Letters.

Measuring about 68 miles (110 kilometers) across, the caldera is deep enough to hold the entire volume of water in Lake Huron, and then some. Examining the volcanic features within the caldera required high-resolution imaging, which the researchers obtained from the Context Camera on NASA's Mars Reconnaissance Orbiter.

The team mapped the boundaries of the lava flows from each of the 29 volcanic vents and determined the stratigraphy, or layering, of the flows. The researchers also performed a technique called crater counting--tallying up the number of craters at least 330 feet (100 meters) in diameter--to estimate the ages of the flows.

Using a new computer model developed by Richardson and his colleagues at the University of South Florida, the two types of information were combined to determine the volcanic equivalent of a batting lineup for Arsia Mons' 29 vents. The oldest flows date back about 200 million years. The youngest flows probably occurred 10 to 90 million years ago--most likely around 50 million years ago.

The modeling also yielded estimates of the volume flux for each lava flow. At their peak about 150 million years ago, the vents in the Arsia Mons' caldera probably collectively produced about 1 to 8 cubic kilometers of magma every million years, slowly adding to the volcano's size.

"Think of it like a slow, leaky faucet of magma," said Richardson. "Arsia Mons was creating about one volcanic vent every 1 to 3 million years at the peak, compared to one every 10,000 years or so in similar regions on Earth."

A better understanding of when volcanic activity on Mars took place is important because it helps researchers understand the Red Planet's history and interior structure.

"A major goal of the Mars volcanology community is to understand the anatomy and lifecycle of the planet's volcanoes. Mars' volcanoes show evidence for activity over a larger time span than those on Earth, but their histories of magma production might be quite different," said Jacob Bleacher, a planetary geologist at Goddard and a co-author on the study. "This study gives us another clue about how activity at Arsia Mons tailed off and the huge volcano became quiet."
-end-
Malin Space Science Systems, San Diego, built and operates the Context Camera. NASA's Jet Propulsion Laboratory, Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington.

By Elizabeth Zubritsky, NASA's Goddard Space Flight Center in Greenbelt, Maryland

NASA/Goddard Space Flight Center

Related Mars Articles:

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
A material way to make Mars habitable
New research suggest that regions of the Martian surface could be made habitable with a material -- silica aerogel -- that mimics Earth's atmospheric greenhouse effect.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
Mars: Not as dry as it seems
Two new Oxford University papers have shed light on why there is no life on Mars.
More evidence of water on Mars
River deposits exist across the surface of Mars and record a surface environment from over 3.5 billion years ago that was able to support liquid water at the surface.
How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
Does Mars have rings? Not right now, but maybe one day
Purdue researchers developed a model that suggests that debris that was pushed into space from an asteroid or other body slamming into Mars around 4.3 billion years ago and alternates between becoming a planetary ring and clumping up to form a moon.
Digging deeper into Mars
Scientists continue to unravel the mystery of life on Mars by investigating evidence of water in the planet's soil.
More Mars News and Mars Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.