Nav: Home

'Candy cane' polymer weave could power future functional fabrics and devices

March 20, 2018

NEW ORLEANS, March 20, 2018 -- If scientists are ever going to deliver on the promise of implantable artificial organs or clothing that dries itself, they'll first need to solve the problem of inflexible batteries that run out of juice too quickly. They're getting closer, and today researchers report that they've developed a new material by weaving two polymers together in a way that vastly increases charge storage capacity.

The researchers will present their work today at the 255th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 13,000 presentations on a wide range of science topics.

"We had been developing polymer networks for a different application involving actuation and tactile sensing," Tiesheng Wang says. "After the project, we realized that the stretchable, bendable material we'd made could potentially be used for energy storage."

Batteries, specifically lithium-ion batteries, dominate the energy storage landscape. However, the chemical reactions underlying the charging and discharging process in batteries are slow, limiting how much power they can deliver. Plus, batteries tend to degrade over time, requiring replacement. An alternate energy storage device, the supercapacitor, charges rapidly and generates serious power, which could potentially allow electric cars to accelerate more quickly, among other applications. Plus, supercapacitors store energy electrostatically, not chemically, which makes them more stable and long-lasting than many batteries. But today's commercially available supercapacitors require binders and have low energy density, limiting their application in emerging go-anywhere electronics.

Wang, a graduate student in the lab of Stoyan Smoukov, Ph.D., at the University of Cambridge (U.K.) suspected that a flexible conducting polymer-based material from another project they were working on could be a better alternative. Conducting polymers, such as poly(3,4-ethylenedioxythiophene) (PEDOT), are candidate supercapacitors that have advantages over traditional carbon-based supercapacitors as charge storage materials. They are pseudocapacitive, meaning they allow reversible electrochemical reactions, and they also are chemically stable and inexpensive. However, ions can only penetrate the polymers a couple of nanometers deep, leaving much of the material as dead weight. Scientists working to improve ion mobility had previously developed nanostructures that deposit thin layers of conducting polymers on top of support materials, which improves supercapacitor performance by making more of the polymer accessible to the ions. The drawback, according to Wang, is that these nanostructures can be fragile, difficult to make reproducibly when scaled-up and poor in electrochemical stability, limiting their applicability.

So, Smoukov and Wang developed a more robust material by weaving together a conducting polymer with an ion-storage polymer. The two polymers were stitched together to form a candy cane-like geometry, with one polymer playing the role of the white stripe and the other, red. While PEDOT conducts electricity, the other polymer, poly(ethylene oxide) (PEO), can store ions. The interwoven geometry is instrumental to the energy storage benefits, Wang says, because it allows the ions to access more of the material overall, approaching the "theoretical limit."

When tested, the candy cane supercapacitor demonstrated improvements over PEDOT alone with regard to flexibility and cycling stability. It also had nearly double the specific capacitance compared to conventional PEDOT-based supercapacitors.

Still, there's room for improvement, Smoukov says. "In future experiments, we will be substituting polyaniline for PEDOT to increase the capacitance," he says. "Polyaniline, because it can store more charge per unit of mass, could potentially store three times as much electricity as PEDOT for a given weight." That means lighter batteries with the same energy storage can be charged faster, which is an important consideration in the development of novel wearables, robots and other devices.
-end-
A press conference on this topic will be held Tuesday, March 20, at 9:30 a.m. Central time in the Ernest N. Morial Convention Center. Reporters may check-in at the press center, Great Hall B, or watch live on YouTube http://bit.ly/ACSLive_NOLA. To ask questions online, sign in with a Google account.

Smoukov acknowledges funding from the European Research Council. Wang thanks the China Scholarship Council for funding and the U.K. Centre for Doctoral Training in Sensor Technologies and Applications of the Engineering and Physical Sciences Research Council for support.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Candy cane-like semi-interpenetrating polymer networks for enhanced fast-charging power source of electronics

Abstract

Pseudocapacitance is a material property that allows ions to enter inside the material and thus pack much more charge than carbon ones that mostly store the charge near the surface (in the so-called double layer). Conducting polymers show great promise as supercapacitor materials due to their high pseudocapacitance, low cost, toughness, and flexibility. The problem with polymer-based supercapacitors, however, is that the ions necessary for these chemical reactions can only access the top few nanometers below the material surface, leaving the rest of the electrode as dead weight. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, approaching the theoretical limit of PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). The supercapacitor based on our material, which is known as "Candy Cane Supercapacitor", could power electronics embedded in smart clothing, wearable and implantable devices, and soft robotics.

American Chemical Society

Related Energy Storage Articles:

Breakthrough enables storage and release of mechanical waves without energy loss
A new discovery by researchers at the Advanced Science Research Center at The Graduate Center, CUNY could allow light and sound waves to be stored intact for an indefinite period of time and then direct it toward a desired location on demand.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy storage in the Midwest and beyond: A timely analysis
As the Federal Energy Regulatory Commission (FERC) released an update to last year's order on energy storage, MRS Energy & Sustainability today publishes a timely collection of papers that unpack the issue of energy storage in the Midwest and beyond.
Engineered bacteria could be missing link in energy storage
One of the big issues with sustainable energy systems is how to store electricity that's generated from wind, solar and waves.
Need more energy storage? Just hit 'print'
Drexel University researchers have developed a conductive ink made from a special type of material they discovered, called MXene, that was used by the Trinity College researchers to print components for electronic devices.
More Energy Storage News and Energy Storage Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...