Nav: Home

Even flies like a familiar song

March 20, 2018

Researchers at Nagoya University develop fruit fly model to explore how learned auditory cues alter mating behavior and sexual preference.

Nagoya, Japan - The ability to learn and speak language depends heavily on the sounds and language we experience during early infancy. While this may sound self-evident, we still do not understand exactly what happens neurologically as a developing infant learns how to speak. In a study published in eLife, researchers at Nagoya University devised a new neurological model in fruit flies that may illuminate this process--and made some key discoveries about insect mating along the way.

"Higher mammalian species such as humans learn how to vocalize by listening to sounds from their own species," lead author Xiaodong Li says. "Much of the research on how this occurs has been done in songbirds, which have much simpler neural circuits than humans. Even in songbirds, though, our understanding of how auditory inputs translate into vocalized outputs is still very rudimentary."

To get around this intractable problem of complexity, the research team focused on Drosophila melanogaster. This unassuming fruit fly is commonly used in research as a model organism, because its biology is much simpler than humans--but surprisingly similar in fundamental ways. As fruit flies are unable to vocalize, however, the team studied a different mode of communication often shaped by auditory experience: courtship.

"As part of their courting ritual, male fruit flies vibrate their wings in pulses," Li explains. "Every species of fruit fly is attracted to a unique wing pulse pattern. Attraction to a specific pulse is an evolutionary trait that promotes copulation while dissuading inter-species mating. Importantly, what we discovered was that this attraction is a learned behavior in fruit flies, contrary to the prevailing view that it happens innately."

After emerging from their pupae as young adults, fruit flies spend a lot of time around their peers before they become mature enough to mate. The researchers hypothesized that exposure to these wing pulse "songs" during this time may teach them to prefer their species' own pulse.

To test this idea, the team clipped the wings of young flies and put them in isolated chambers. The flies were either left alone to mature, or exposed to a sound that mimicked their species' wing pulse. Males and females were then put together and another pulse was played, this time from a different species. If sexual preference was purely innate, the team reasoned, then the early exposure to their own species' mating song would have no impact on the 'dating' that eventually commenced.

The result? When flies were first exposed to their own species' song, subsequent mating went on in a typical fashion. Without the prior auditory training, however, the courtship ritual became notably less courtly: untrained females copulated in response to another species' song, while untrained males began to chase one another (a behavior in the insect world known as "chaining").

Though an intriguing discovery on its own, the researchers went one step further, seeking out the neurons responsible for this learned behavior. By experimentally manipulating levels of the neurotransmitter GABA and its receptor in the brain, the team pinpointed female pC1 neurons as crucial players in the courtship learning process. The discovery that fruit fly neurons can turn sound into sexual preference makes it possible to study how learning can shape communicative behaviors.

"The pC1 neuron cluster is known to be involved in evaluating sexual cues, but what we've found is that this cluster can be molded in response to auditory experiences during development," lead investigator Azusa Kamikouchi says. "This finding opens up an entirely new research field. It allows us to use a highly tractable and simplified model in flies to study how auditory learning translates, at the neurological level, into sensorimotor behaviors that in many ways resemble the phenomenon of language."
-end-
The article, "Auditory Experience Controls the Maturation of Song Discrimination and Sexual Response in Drosophila," was published in eLife at DOI:10.7554/eLife.34348.

Nagoya University

Related Language Articles:

The world's most spoken language is...'Terpene'
If you're small, smells are a good way to stand out.
Study analyzes what 'a' and 'the' tell us about language acquisition
A study co-authored by an MIT professor suggests that experience is an important component of early-childhood language usage although it doesn't necessarily account for all of a child's language facility.
Why do people switch their language?
Due to increasing globalization, the linguistic landscape of our world is changing; many people give up use of one language in favor of another.
Discovering what shapes language diversity
A research team led by Colorado State University is the first to use a form of simulation modeling to study the processes that shape language diversity patterns.
'Speaking my language': Method helps prepare teachers of dual language learners
Researchers at Lehigh University, led by L. Brook Sawyer and Patricia H.
The brain watched during language learning
Researchers from Nijmegen, the Netherlands, have for the first time captured images of the brain during the initial hours and days of learning a new language.
'Now-or-never bottleneck' explains language acquisition
We are constantly bombarded with linguistic input, but our brains are unable to remember long strings of linguistic information.
The secret language of microbes
Social microbes often interact with each other preferentially, favoring those that share certain genes in common.
A programming language for living cells
New language lets MIT researchers design novel biological circuits.
Syntax is not unique to human language
Human communication is powered by rules for combining words to generate novel meanings.

Related Language Reading:

The Language Instinct: How the Mind Creates Language (Harper Perennial Modern Classics)
by Steven Pinker (Author)

The Unfolding of Language: An Evolutionary Tour of Mankind's Greatest Invention
by Guy Deutscher (Author)

Living Language German, Complete Edition: Beginner through advanced course, including 3 coursebooks, 9 audio CDs, and free online learning
by Living Language (Author)

The 5 Love Languages: The Secret to Love that Lasts
by Gary Chapman (Author)

Living Language Spanish, Complete Edition
by Living Language (Author)

C Programming Language, 2nd Edition
by Brian W. Kernighan (Author), Dennis M. Ritchie (Author)

A Pattern Language: Towns, Buildings, Construction (Center for Environmental Structure Series)
by Christopher Alexander (Author), Sara Ishikawa (Author), Murray Silverstein (Author), Max Jacobson (Author), Ingrid Fiksdahl-King (Author), Shlomo Angel (Author)

Through the Language Glass: Why the World Looks Different in Other Languages
by Guy Deutscher (Author)

Fluent Forever: How to Learn Any Language Fast and Never Forget It
by Gabriel Wyner (Author)

The Art of Language Invention: From Horse-Lords to Dark Elves, the Words Behind World-Building
by David J. Peterson (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.