Decision-making is shaped by individual differences in the functional brain connectome

March 20, 2018

CHAMPAIGN, Ill. -- Each day brings with it a host of decisions to be made, and each person approaches those decisions differently. A new study by University of Illinois researchers found that these individual differences are associated with variation in specific brain networks - particularly those related to executive, social and perceptual processes.

A group of researchers at the Beckman Institute for Advanced Science and Technology at Illinois, led by psychology professor Aron Barbey and postdoctoral researcher Tanveer Talukdar, investigated whether individual differences in brain connectivity were associated with decision-making, using functional MRI and a comprehensive test of decision-making. While prior studies of decision-making have focused on group effects, or the ways everyone's brains are similar, the new study focused on individual differences.

"People often take different approaches to decision-making. They might apply different strategies, consider different elements of the problem or assign value to the options differently," Barbey said. "Our research suggests that neurobiological differences appear to be important when accounting for one's susceptibility to biases in judgment and for understanding their competence in decision-making."

The study, published in the journal Human Brain Mapping, is one of the largest and most comprehensive experiments of individual differences in decision-making conducted to date, the researchers said, with 304 healthy adult participants.

Study participants were administered the Adult Decision-Making Competence test, a comprehensive psychological evaluation tool that measures six well-established facets of decision-making - for example, "resistance to framing" and "risk perception."

"When making everyday decisions, we may be vulnerable to specific types of errors and biases in judgment. The Adult Decision-Making Competence test allows us to characterize the extent to which people are susceptible to specific types of biases that have been studied in the literature on human judgment and decision-making," Barbey said. "A person is thought to be competent in decision-making to the extent that they are able to resist these biases and to make accurate decisions."

The researchers also administered resting-state functional MRI to assess functional brain connectivity within each study participant. They didn't focus merely on individual regions, but assessed the entire functional brain connectome - which represents how each region is functionally connected to every other region of the brain.

"We conducted an analysis of the whole brain, examining the connections among all regions," Talukdar said. "We examined the functional brain connectome of each individual and then investigated how each individual's connectome differed from every other individual in the sample."

Next, the researchers analyzed how the individual differences they saw in the brain were associated with performance on the Adult Decision-Making Competence test.

They found that functional connectivity within specific brain regions was associated with individual differences in decision-making. As expected, brain regions within the frontal lobe were involved, which are known to support executive functions such as reasoning and problem-solving. In addition, regions within the temporal and parietal cortex, which support memory and attention, as well as brain structures within the occipital lobe, which process visual and spatial information, were engaged.

The researchers then performed an analysis to further characterize the role of these regions by examining their contributions to specific intrinsic connectivity networks.

"Research indicates that the brain is functionally organized according to intrinsic connectivity networks, which are known to play a central role in specific facets of intelligence. For example, the fronto-parietal network regulates executive functions, the ventral attention network supports attention, and the limbic network underlies emotional and social processing," Talukdar said.

The researchers found that individual differences in functional brain connectivity reflected differences in how certain intrinsic connectivity networks were engaged. For example, the measure of "resistance to framing," which assesses whether individuals' choices are susceptible to irrelevant variations in a problem description, was associated with the ventral attention network. The researchers hypothesized that this network directs attention to essential aspects of the problem, which serves to attenuate the framing bias.

Barbey's group is further studying how individual differences in functional brain connectivity are shaped by learning and experience. Their next study investigates whether decision-making competence can be improved by specific interventions - ranging from cognitive training, noninvasive brain stimulation, physical fitness training and nutrition - to target the brain networks identified in the current study.

"Decision-making competence is known to be influenced by lifestyle factors, such as social engagement, diet and physical activity," Talukdar said. "Now we can design interventions that take into account an individual's functional brain connectivity and the respects in which people differ in their approach to decision-making."
-end-
The Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity supported this work, part of the INSIGHT project.

Editor's notes: To reach Aron Barbey, call 217-244-2551; email barbey@illinois.edu. To reach Tanveer Talukdar, email ttanveer@illiois.edu.

The paper "Individual differences in decision making competence revealed by multivariate fMRI" is available online. DOI: 10.1002/hbm.24032

University of Illinois at Urbana-Champaign

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.