A method for predicting the impact of global warming on disease

March 20, 2018

Scientists have devised a method for predicting how rising global temperatures are likely to affect the severity of diseases mediated by parasites. Their method can be applied widely to different host-pathogen combinations and warming scenarios, and should help to identify which infectious diseases will have worsened or diminished effects with rising temperatures.

The proof-of-concept method, which was road-tested using the water flea (Daphnia magna) and its pathogen (Ordospora colligata) as a model system, uses a long-standing biological concept known as the metabolic theory of ecology to predict how a wide range of processes - all of which influence host-parasite dynamics - are affected by temperature.

The scientists, led by William C. Campbell Lecturer in Parasite Biology at Trinity College Dublin, Professor Pepijn Luijckx, and graduate student Devin Kirk from the University of Toronto, have just published their results in leading international journal PLOS Biology (see: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2004608).

Professor Luijckx said: "Rising temperatures due to global warming can alter the proliferation and severity of infectious diseases, and this has broad implications for conservation and food security. It is therefore really important that we understand and identify the diseases that will become more harmful with rising temperatures, with a view to mitigating their impacts."

Unfortunately this has always been very difficult -- because temperature affects many processes in the host and the pathogen in different ways, it is hard to predict the cumulative effect that a rise (or drop) in temperature will have. For example, while host immune function and pathogen infectivity may be higher as temperatures rise, pathogen longevity may be lower. Additionally, to predict the severity of disease, we need data that doesn't always exist on the temperature sensitivity of all the processes involved, especially for newly emergent diseases.

The solution -- the metabolic theory of ecology

The metabolic theory of ecology can be used to predict how various biological processes respond to temperature. It is based on the idea that each process is controlled by enzymes, and that the activity and temperature dependence of these enzymes can be described using simple equations. Even with limited data, the theory thus allows for the prediction of the temperature dependence of host and pathogen processes.

Professor Luijckx said: "By using the metabolic theory of ecology we can estimate the thermal dependence of each individual process, step by step, and calculate a final prediction of disease severity at different, changing temperatures. Until now, no study has shown if this works for simple - unicellular - pathogens growing within their host, but we have been able to show that the method works very well in the model system we used."

In their study, the scientists used the water flea and its pathogen and measured how processes such as host mortality, aging, parasite growth and damage done to the host changed over a wide temperature range. They used these measurements to determine the thermal dependencies of each of these processes using metabolic theory.

The results showed that the different processes had unique relationships with temperature. For example, while damage inflicted to the host per pathogen appeared to be independent of temperature, both host mortality and pathogen growth rate were strongly dependent -- but in opposite ways.

Professor Luijckx added: "What is exciting is that these results demonstrate that linking and integrating metabolic theory within a mathematical model of host-pathogen interactions is effective in describing how and why disease interactions change with global warming."

"Due to its simplicity and generality, the method we have developed could be widely applied to understand the likely impact of global warming on a variety of diseases, including diseases affecting aquaculture, such as salmonid diseases like Pancreas disease, pathogens of bee pollinators, such as Nosema, and growth of vector-borne and tick-borne diseases in their invertebrate hosts, such as malaria and Lyme disease."

Trinity College Dublin

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.