Nav: Home

Researchers shed new light on the origins of modern humans

March 20, 2019

RESEARCHERS from the University of Huddersfield, with colleagues from the University of Cambridge and the University of Minho in Braga, have been using a genetic approach to tackle one of the most intractable questions of all - how and when we became truly human.

Modern Homo sapiens first arose in Africa more than 300,000 years ago, but there is great controversy amongst scholars about whether the earliest such people would have been 'just like us' in their mental capacities - in the sense that, if they were brought up in a family from Yorkshire today, for example, would they be indistinguishable from the rest of the population? Nevertheless, archaeologists believe that people very like us were living in small communities in an Ice Age refuge on the South African coast by at least 100,000 years ago.

Between around 100,000 and 70,000 years ago, these people left plentiful evidence that they were thinking and behaving like modern humans - evidence for symbolism, such as the use of pigments (probably for body painting), drawings and engravings, shell beads, and tiny stone tools called microliths that might have been part of bows and arrows. Some of this evidence for what some archaeologists call "modern human behaviour" goes back even further, to more than 150,000 years.

But if these achievements somehow made these people special, suggesting a direct line to the people of today, the genetics of their modern "Khoi-San" descendants in southern Africa doesn't seem to bear this out. Our genomes imply that almost all modern non-Africans from all over the world - and indeed most Africans too - are derived from a small group of people living not in South Africa but in East Africa, around 60,000-70,000 years ago. There's been no sign so far that southern Africans contributed to the huge expansion of Homo sapiens out of Africa and across the world that took place around that time.

That is, until now. The Huddersfield-Minho team of geneticists, led by Professor Martin Richards at Huddersfield and Dr Pedro Soares in Braga, along with the eminent Cambridge archaeologist Professor Sir Paul Mellars, have studied the maternally-inherited mitochondrial DNA from Africans in unprecedented detail, and have identified a clear signal of a small-scale migration from South Africa to East Africa that took place at just that time, around 65,000 years ago. The signal is only evident today in the mitochondrial DNA. In the rest of the genome, it seems to have been eroded away to nothing by recombination - the reshuffling of chromosomal genes between parents every generation, which doesn't affect the mitochondrial DNA - in the intervening millennia.

The migration signal makes good sense in terms of climate. For most of the last few hundred years, different parts of Africa have been out of step with each other in terms of the aridity of the climate. Only for a brief period at 60,000-70,000 years ago was there a window during which the continent as a whole experienced sufficient moisture to open up a corridor between the south and the east. And intriguingly, it was around 65,000 years ago that some of the signs of symbolism and technological complexity seen earlier in South Africa start to appear in the east.

The identification of this signal opens up the possibility that a migration of a small group of people from South Africa towards the east around 65,000 years ago transmitted aspects of their sophisticated modern human culture to people in East Africa. Those East African people were biologically little different from the South Africans - they were all modern Homo sapiens, their brains were just as advanced and they were undoubtedly cognitively ready to receive the benefits of the new ideas and upgrade. But the way it happened might not have been so very different from a modern isolated stone-age culture encountering and embracing western civilization today.

In any case, it looks as if something happened when the groups from the South encountered the East, with the upshot being the greatest diaspora of Homo sapiens ever known - both throughout Africa and out of Africa to settle much of Eurasia and as far as Australia within the space of only a few thousand years.

Professor Mellars commented: "This work shows that the combination of genetics and archaeology working together can lead to significant advances in our understanding of the origins of Homo sapiens."
-end-
* The article, A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration, can be found online in Scientific Reports.

University of Huddersfield

Related Genetics Articles:

Improve evolution education by teaching genetics first
Evolution is a difficult concept for many students at all levels, however, a study publishing on May 23 in the open access journal PLOS Biology has demonstrated a simple cost-free way to significantly improve students' understanding of evolution at the secondary level: teach genetics before you teach them evolution.
Study unravels the genetics of childhood 'overgrowth'
Researchers have undertaken the world's largest genetic study of childhood overgrowth syndromes -- providing new insights into their causes, and new recommendations for genetic testing.
Could genetics influence what we like to eat?
Gene variants could affect food preferences in healthy people, according to a new study.
Reverse genetics for rotavirus
Osaka University scientists generate a new plasmid-based reverse genetics system for rotaviruses.
The genetics behind being Not Like Daddy
A common strategy to create high-yielding plants is hybrid breeding.
Understanding the genetics of human height
A large-scale international study involving more than 300 researchers, published today in Nature, heralds the discovery of 83 genetic variations controlling human height.
Animal genetics: The bovine heritage of the yak
Though placid enough to be managed by humans, yaks are robust enough to survive at 4,000 meters altitude.
New genetics clues into motor neuron disease
Researchers at the University of Queensland have contributed to the discovery of three new genes which increase the risk of motor neuron disease, opening the door for targeted treatments.
Your best diet might depend on your genetics
If you've ever seen a friend have good results from a diet but then not been able to match those results yourself, you may not be surprised by new findings in mice that show that diet response is highly individualized.
Using precision-genetics in pigs to beat cancer
Because of their similarities to people, using new technology in pigs turn up as a valuable alternative to rodent models of cancer.

Related Genetics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...