Nav: Home

New measurement method for radioactive methane

March 20, 2019

The method developed by Juho Karhu in his PhD thesis work at the University Helsinki, is a first step towards creating a precise measuring device.

The article by doctoral researcher Juho Karhu was published in February, 2019, in Optics Letters, one of the most internationally renowned publications in the area of photonics. The article described a new method for measuring radioactive methane.

- The new method is an optical one based on spectroscopy. Previously, radioactive methane has been measured with accelerator mass spectrometry, involving expensive and huge machines. Optical measuring could be a cheaper and more agile method, Karhu says.

The method created by Karhu is based on the absorption of materials, i.e. how the material retains light at different wavelengths. By measuring how much the material absorbs, we can deduce how much it contains different components.

In his research, Karhu analysed which wavelength the light source used should have in order to measure radioactive methane. This is a first step towards a functioning measurement device.

Optical methods have been used before to measure radioactive carbon dioxide. So far, we have not reached the same precision with optical methods as with accelerator mass spectrometry. Karhu is the first scientist to apply optical techniques to the measurement of radioactive methane.

Applications within the energy industry

According to Karhu, the optical method for measuring radioactive methane could be applied in fields such as energy production.

-- The method could be used for finding out the composition of fuel, for example. The authorities could analyse how much of a biofuel consists of biogas and how much is natural gas, Karhu explains.

The method could also be applicable in nuclear power plants. It could be used to measure the levels of radioactive methane on-site. Samples would no longer have to be sent to a laboratory.

Radioactive methane occurs naturally all around us. It is in the atmosphere and all living beings. However, the levels are very low. A very small part of all natural methane is radioactive.

In small doses, radioactive methane is harmless to humans and the environment.
-end-
Karhu gained the topic for his thesis work from the Technical Research Centre of Finland, where Senior Fellow Guillaume Genoud heads the development of the optical measurement of radioactive molecules.

Assistant Professor Markku Vainio was the supervisor for the thesis belonging to the field of physical chemistry.

Reference:

Broadband photoacoustic spectroscopy of CH414 with a high-power mid-infrared optical frequency comb, Juho Karhu, Teemu Tomberg, Francisco Senna Vieira, Guillaume Genoud, Vesa Hänninen, Markku Vainio, Markus Metsälä, Tuomas Hieta, Steven Bell, and Lauri Halonen. Optics Letters, Vol. 44, Issue 5, pp. 1142-1145 (2019), https://doi.org/10.1364/OL.44.001142

More information:

Doctoral researcher Juho Karhu, Department of Chemistry, University of Helsinki,The doctoral programme in chemistry and molecular sciences (CHEMS), juho.karhu@helsinki.fi

Associate Professor Markku Vainio, University of Helsinki, markku.vainio@helsinki.fi, Department of Chemistry, +358 50 4486525

University of Helsinki

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.