Nav: Home

Children grow in a different way, scientists demonstrate

March 20, 2019

An international group of scientists under the supervision of a staff member of Sechenov University (Russia) and Karolinska Institute (Sweden) found out that earlier views on the mechanisms that provide and regulate skeletal growth were wrong. Previously, scientists used to believe that at birth a body had a certain number of cells to grow the skeleton, and when this amount was over, the growth stopped. However, the authors of the work discovered a special area of the growth plate (a structure that enables longitudinal growth of bones) called a stem niche that can theoretically produce infinite numbers of new cells. The scientists believe that growth stops not when all growth cells are used, but when the stem niche is destroyed. This discovery changes the whole concept of growth and may suggest new method of growth disorder treatment in children. The article of the team was published in Nature.

Skeletal growth in children is secured by the growth plate - an area of dividing and growing cartilage tissue cells or chondrocytes. The plates are narrow disks around 1 mm thick. They are located at each end of a bone between the head and the main part (except for several skull, pelvis, and scapula bones). Inside a growth plate there are progenitor cells (the precursors of chondrocytes). They are differentiated into chondrocytes, and the latter divide, grow bigger, and die leaving behind a mineralized carcass made of the intercellular substance that bone tissue later bases on. This process enables the children's growth, and any disorders in it may lead to various growth anomaly, including stunted growth and microplasia.

Previously, it was believed that progenitor cells were used during the whole process of longitudinal skeletal growth, and when there were no more such cells in the growth plate, the growth stopped. However, the life of such cells in short, and the number of divisions is limited. Therefore it was difficult to understand how they were able to produce numerous chondrocytes that were required to secure the growth of bone tissue for many years.

To monitor the division and growth of progenitor cells, the scientists used the so-called Confetti mice. Their cells glow with different colors under UV rays. The genes that code the glowing proteins are inherited when the cells are divided. Therefore, one may identify the progeny (clone) of each marked cell. The authors of the work traced the progeny of each progenitor cell in the growth plate and found out that the clones differed depending on the age of the mice. In embryos and newborns each progenitor cell divided only 2 or 3 times and formed small clones. Starting from the age when the mice were able to walk and run, their progenitor cells divided in a slower, but a more consistent pattern and formed big and stable clones.

Having modelled the division and development of the cells (see the results of the modeling on the web-site of the lab), the scientists found out that this type of clone formation was only possible in the case of self-renewing progenitors. Such behavior of these cells is typical in the tissues that have to produce numerous cells, such as skin, blood, or intestines. It is known that for such progenitors (the so-called adult stem cells) to have special favorable conditions for constant updating, they have to be surrounded by other cells and the extracellular matrix. The total of such conditions is called a stem niche. The authors of the work verified this hypothesis and confirmed that specific genes typical for stem niches were expressed in the growth plate. The new stem niche was called an epiphyseal one.

The authors of the article believe that the niche might have appeared due to the formation of a secondary ossification (calcification) center in the head of the bone that happens in mice at the age of three weeks, and in people - by the end of their first year.

The research was carried out on mice, and it will take time and additional studies to understand whether it is applicable to people. However, if it is confirmed that human children grow based on the same growth plate functioning principles, scientists will be able to reconsider the methods of treatment for the children with growth disorders. Current results already explain the observed cases of unconstrained growth in several patients with genetic disorders. Moreover, the results obtained by the scientists may explain the reasons why the growth of children stops after trauma or chemotherapy and suggest new treatment methods.

"In our article we point out that skeletal growth is based on the so-called stem niche principle that we discovered and characterized. It suggests completely new approaches to the treatment of children with growth disorders. When we understand how the niche is controlled, we'll be able to regulate it and let the kids with growth disorders grow as high as they want to be", said Andrei Chagin, the head of the Laboratory for the Regeneration of Skeletal Tissues of Sechenov University.
-end-


Sechenov University

Related Progenitor Cells Articles:

Scientists modify CAR-T cells to target multiple sites on leukemia cells
In a preclinical study, scientists engineer new CAR-T cells to attack three sites on leukemia cells, instead of one.
UCLA study links progenitor cells to age-related prostate growth
The prostates of older mice contain more luminal progenitor cells -- cells capable of generating new prostate tissue -- than the prostates of younger mice, UCLA researchers have discovered.
Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.
Transplanted bone marrow endothelial progenitor cells delay ALS disease progression
Transplanting human bone marrow-derived endothelial progenitor cells into mice mimicking symptoms of amyotrophic lateral sclerosis (ALS) helped more motor neurons survive and slowed disease progression by repairing damage to the blood-spinal cord barrier, University of South Florida researchers report.
Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
Interrupted reprogramming converts adult cells into high yields of progenitor-like cells
A modified version of iPS methodology, called interrupted reprogramming, allows for a highly controlled, safer, and more cost-effective strategy for generating progenitor-like cells from adult cells.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Progenitor Cells News and Progenitor Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.