Nav: Home

Chromatin changes rapidly in response to low oxygen, study finds

March 20, 2019

A study by the University of Liverpool reveals new insights into how cells respond to oxygen deprivation.

Published in the prestigious journal Science, the researchers found that chromatin, the complex of DNA and proteins where all genes reside, quickly changes in response to low oxygen.

Oxygen is essential for human life. Importantly, deprivation of oxygen (hypoxia) is observed in a variety of human diseases from stroke to cancer.

"Understanding how cells sense and respond to low oxygen is key to prevent damage and improve outcomes for patients. In addition, it also addresses a fundamental question in biology on how oxygen is utilised in cells," explains Professor Sonia Rocha from the University's Institute of Integrative Biology, who led the study.

The researchers wanted to improve this understanding, with a specific focus on identifying the fastest processes initiated by cells when faced with oxygen deprivation.

Previous work had focused on the activation of 'hypoxia-inducible factors' (HIFs) - transcription factors that respond to decreases in available oxygen and which are capable of activating hundreds of genes. However, it is also known that these responses take several hours to be mounted.

To investigate faster processes, the team looked for specific molecular changes following short periods of hypoxia in human cells. They identified that chromatin quickly changes in response to low oxygen and that these changes are necessary for the cell's response to low oxygen several hours later. They went on to show that the mechanism by which chromatin changes is via the inhibition of a class of enzymes that require oxygen for their activity. These completely unexpected findings, demonstrate for the first time that changes to chromatin preceed activation of gene expression in response to lowering of oxygen.

Professor Rocha adds: "These enzymes are present in a variety of organisms and precede, in evolutionary terms, the HIFs, suggesting an ancient mechanism for sensing and responding to alterations in oxygen availability. It also suggests that targeting these oxygen-dependent enzymes could be a valid route for future drug therapies."
-end-


University of Liverpool

Related Chromatin Articles:

Andalusian experts indicate new elements responsible for instability in chromosomes
The researchers state that RNA joins with DNA by chance or because of a disease, the structure of the chromatin, the protein envelope of the chromosomes is altered, causing breaks in the DNA.
Dynamic DNA helps ward off gene damage, study reveals
Researchers have identified properties in DNA's protective structure that could transform the way scientists think about the human genome.
Scientists model gene regulation with chromatin accessibility
Researchers from the Academy of Mathematics and Systems Science (AMSS) of the Chinese Academy of Sciences have teamed up with Stanford University and Tsinghua University scientists to successfully model data on gene regulation with paired expression and chromatin accessibility (PECA) and have developed new tools to infer context-specific regulatory networks.
In fruit fly and human genetics, timing is everything
Using fruit flies, UNC-Chapel Hill researchers discovered a cascade of molecular signals that program gene activity to drive the fly from one stage of maturation to the next, like a baby turning into an adult.
Unveiling how nucleosome repositioning occurs to shed light on genetic diseases
A research group led by a Waseda University professor became the first in the world to unveil the three-dimensional structure of an overlapping dinucleosome, a newly discovered chromatin structural unit.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Mathematical analysis reveals architecture of the human genome
Mathematical analysis has led researchers in Japan to a formula that can describe the movement of DNA inside living human cells.
Understanding chromatin's cancer connection
New live-cell imaging technique allows Northwestern University researchers to study chromatin's dynamic processes, including its role in cancer and disease.
Force triggers gene expression by stretching chromatin
How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical.
Selective protection of genetic information by epigenetic system
DNA is replicated to pass genetic information to the daughter cells during cell proliferation.

Related Chromatin Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".