Nav: Home

Magnetic stir bars carry 'memory' from previous flasks and tubes

March 20, 2019

Surprisingly high level of surface contaminations of magnetic stir bars escapes regular cleaning and brings highly reactive traces of metal species from previous experiments to the next ones.

With electron microscopy experiments and DFT calculations it was shown that plastic surface of magnetic stir bars can form reactive centers which absorb metal atoms from solution followed by growth of metal nanoparticles. The process readily takes place on the surface of PTFE-coated magnetic stir bars, ubiquitously used in modern chemistry and biology labs.

The regular in-use magnetic stir bars carry bunches of metal nanoparticles on their surface. It was demonstrated that the presence of a previously used magnetic stir bar in reaction medium is sufficient for initiating a full-scale catalytic reaction (promoted by leaching of metal species from the PTFE surface).

Magnetic stir bars are commonly regarded as reusable consumables, and in many labs they last for months and years. This study shows that in a regular catalysis lab almost all magnetic stir bars become permanently contaminated with metal nanoparticles after about a week of use. Regular routine cleaning procedures do not remove such contamination completely. Indeed, subsequent release of metal traces in the next reactions is unacceptable even in small quantitates, as it may add critical bias to many experimental settings.

In this study the authors examined stir bars from different laboratories, and only 1 bar out of 60 was found uncontaminated. They further investigated the origins of contamination, performed on-line ESI-MS monitoring of the contamination process and demonstrated its impact on catalysis.

Metal contamination is a critical issue, which has paramount importance for the development of high-performance catalytic and synthetic systems. Although several issues dealing with metal contamination have been already discussed in literature, the chemical reactivity of PTFE remains underexplored, as it was believed to be an inert material.

It is difficult to imagine an article, which will intrigue every chemist or biochemist to read. But this one is. Magnetic stirrers are indispensable for treatment of solutions. Easy contamination and chemical activity of stir bars is like a bombshell for the research community.
-end-


AKSON Russian Science Communication Association

Related Contamination Articles:

Using genetically engineered, barcoded microbes to track food contamination and more
Synthetic spores programmed with DNA barcodes provide a highly flexible, high-resolution system for tagging and tracking the provenance of an object.
Study analyzes contamination in drug manufacturing plants
A study from an MIT-led consortium, which analyzed 18 incidents of viral contamination at biopharmaceutical manufacturing plants, offers insight into the most common sources of viral contamination, and makes recommendations to help companies avoid such incidents.
New aflatoxin biocontrol product lowers contamination of groundnut and maize in Senegal
Recently a team of plant pathologists have developed an aflatoxin biocontrol product, Aflasafe SN01, for use in Senegal, which includes four atoxigenic isolates native to Senegal and distinct from active ingredients used in other biocontrol products in Africa and elsewhere.
Contamination by metals can increase metabolic stress in mussels
The researchers propose that this evidence should be used as input to public policy with the aim of mitigating the impacts of human activities on coastal and marine ecosystems.
Radioactive tadpoles reveal contamination clues
Tadpoles can be used to measure the amount of radiocesium, a radioactive material, in aquatic environments, according to new research from University of Georgia scientists.
Radiation contamination at a crematorium
Radioactive compounds known as radiopharmaceuticals are used in nuclear medicine procedures to diagnose and treat disease.
New device simplifies measurement of fluoride contamination in water
Seeking to address fluoride contamination in drinking water, chemical engineers at EPFL have developed a portable and user-friendly device that can measure fluoride concentration accurately and reliably.
Where does this contamination come from?
Researchers at TU Wien have developed a simple method for detecting water contamination from ruminants directly at source, using a simple DNA test.
The secret contamination of polar bears
Using a new approach to measure chemical contaminants in polar bears, scientists from Canada and the United States found a large variety of new chlorinated and fluorinated substances, including many new polychlorinated biphenyl metabolites.
Algorithm provides early warning system for tracking groundwater contamination
Scientists at the Department of Energy's Lawrence Berkeley National Laboratory and Savannah River National Laboratory have developed a low-cost method for real-time monitoring of pollutants using commonly available sensors.
More Contamination News and Contamination Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.