Nav: Home

UCI engineers aim to pioneer tissue-engineering approach to TMJ disorders

March 20, 2019

Irvine, Calif., March 20, 2019 - Here's something to chew on: One in four people are impacted by defects of the temporomandibular - or jaw - joint. Despite the pervasiveness of this affliction, treatments are lacking, and many sufferers resort to palliative measures to cope with the pain and debilitation it causes.

"The TMJ is central to chewing, talking and so many other daily activities, so when this crucial joint is impaired, there are significant negative effects on quality of life," said Kyriacos A. Athanasiou, Distinguished Professor of biomedical engineering at the University of California, Irvine. "The problem may start with slight pain and clicking and get progressively worse to the point where it's not just impacting the jaw but the entire body."

Athanasiou is senior author on a paper published recently in the Cell Press journal Trends in Molecular Medicine that examines the causes of temporomandibular disorders, past failures in treating them, and new approaches based on tissue-engineering innovations developed in his laboratory. Co-authors are Ryan Donahue, UCI graduate student researcher in biomedical engineering, and Jerry Hu, UCI principal development engineer in biomedical engineering.

Temporomandibular disorders can be the result of sudden injuries or wear and tear over time. The cartilage disc between the mandible and the temporal bone is subject to thinning or perforation. The condition usually affects patients between the ages of 20 and 50. Most strikingly, premenopausal women are eight times more likely to experience jaw joint problems than men - which Athanasiou calls the TMJ gender paradox.

Typical treatments include physical therapy, splints and adjustments, corticosteroid injections and pain medications. Only about 5 percent of sufferers are candidates for surgical interventions. The TMJ is a joint like many others in the body, and surgeries to repair knees, elbows, hips and shoulders are commonplace, so why are operations on the jaw so rare?

"It has to do with the proximity of the TMJ to the brain," Athanasiou said. "Back in the 1980s, many patients - primarily women - came forward with issues they had with the TMJ. The solution at the time was to insert a spacer between the two bones articulated in the jaw."

The spacer was made of Teflon, a material approved by the U.S. Food and Drug Administration.

"It turns out that Teflon was an absolute catastrophe for all of those women," Athanasiou said. "Because of the large mechanical forces generated in the jaw, the Teflon broke up into pieces, and because of the proximity of the TMJ to the brain, those pieces somehow found their way into the brain."

This fiasco set back therapies for temporomandibular disorders for decades, but now Athanasiou and his colleagues in UCI's Department of Biomedical Engineering are working on new approaches that eschew synthetic materials entirely. They're developing biological TMJ discs in the laboratory that will be suitable for implantation in humans.

"The end product that we aspire to use for treating afflictions of TMJ discs is a tissue-engineered product that's fully alive, biological and mechanically comparable to the real thing," Donahue said. "So even if it breaks down, it will be like any other biological component, without having pieces of foreign material entering the brain."

In work detailed in a study published in Science Translational Medicine in June 2018, Athanasiou's team successfully took cells from the rib cartilage of a Yucatan miniature pig, grew them in their laboratory and implanted the tissue-engineered construct into a separate animal.

Whereas some researchers may place bioengineered cells in some other part of an animal's body - on the back of a mouse, for example - Athanasiou said a key aspect of his group's work is to put the new disc in the exact place as the old one so it will be subject to all the normal stresses of the joint.

"In eight weeks, we saw complete functionality of the TMJ disc, whereas the ones we left untreated deteriorated completely, developing full osteoarthritis in the joint," Hu said. "So we were able to show that by using our tissue-engineering approach in a large-animal model, we could achieve exceptional healing."

Athanasiou said his team's goal now is to conduct trials in more large-animal models to determine if their solution will ultimately work in humans. A major hurdle will be gaining regulatory approval from the FDA, but Athanasiou recently received some encouraging signals from the agency.

"The FDA has asked if we could help them figure out how to go about developing processes for bringing TMJ products to the market," he said. "We would be delighted to help create that pathway."
-end-
Funding for this work was provided by the National Institutes of Health (National Institute of Dental and Craniofacial Research).

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.