Oncotarget Acute promyelocytic leukemia (APL): a review of the literature

March 20, 2020

OncotargetVolume 11, Issue 11 reported that relapsed APL, particularly in the high-risk subset of patients, remains an important clinical problem.

The probability of relapse is significantly higher in the high-risk subset of patients undergoing treatment for APL; overall approximately 10-20% of APL patients relapse regardless of their risk stratification.

Alternative agents and approaches considering these clinical outcomes are needed to address ATO resistance as well as the relapse rate in high-risk APL.

Dr. Joaquin J. Jimenez from the Dr. Phillip Frost Department of Dermatology and The Department of Biochemistry and Molecular Biology, Miller School of Medicine at The University of Miami, in Miami Florida USA the first author on a paper with Dr. Andrew Schally, winner of The Nobel Prize in Physiology or Medicine and founding Oncotarget Editorial Board member said, "In recent decades, treatment of Acute Promyelocytic Leukemia (APL) has served as a representation of targeted therapy and has reflected the power of translational research."

"In recent decades, treatment of Acute Promyelocytic Leukemia (APL) has served as a representation of targeted therapy and has reflected the power of translational research."

- Dr. Joaquin J. Jimenez, Dr. Phillip Frost Department of Dermatology and The Department of Biochemistry and Molecular Biology, Miller School of Medicine at The University of Miami & Dr. Andrew Schally, winner of The Nobel Prize in Physiology or Medicine and founding Oncotarget Editorial Board member

The introduction of all-trans retinoic acid, as well as of arsenic trioxide in the treatment of APL, was crucial to achieving the current remarkable cure rates.

The initial evidence of the differentiating properties of retinoic acid and its potential to be used therapeutically came in 1980, first using the HL-60 cell line as a model for APL.

Shortly after the introduction of retinoic acid into the therapy regimen of APL, the need arose for addressing retinoic acid resistance.

Figure 1: PML-RARA transcriptional repression. he presence of the fusion protein interferes with the transcription of retinoic acid response elements and disrupts the formation of nuclear bodies. The fusion protein, in the absence of pharmacological doses of retinoic acid, recruits co-repressors to silence gene transcription related to differentiation and prevents apoptosis. NCOR: nuclear receptor corepressor, SMRT: silencing mediator for retinoid and thyroid hormone receptor, RARE: retinoic acid response elements, RARA: retinoic acid receptor alpha, PML: promyelocytic leukemia protein, HDAC: histone deacetylase.

Furthermore, up to 50% of patients undergoing treatment will develop differentiation syndrome; a common side effect of differentiating agents.

An evaluation of four clinical trials involving low-risk APL patients from 2010 2014 showed overall survival rates ranging from a low of 86% after three years to a high of 99% after 4 years.

The Jimenez Research Team concluded in their Oncotarget Review, "the biochemical and mechanistic research on APL over the past few decades has led to a unique understanding of this disease and the treatment options, ushering in an era of targeted therapy. Despite remarkable scientific advances in treating APL, some issues still remain, concerning high-risk patients and patients exhibiting an uncharacteristic translocation. The use of HI-60 and NB4 cell lines will continue to be beneficial for future studies on APL since they have already shown a remarkable translational potential and will help address the therapeutic needs of patients that do not respond to conventional treatment. Further studies, addressing aspects of differentiation, nuclear body formation, and degradation of the fusion protein are essential for advancing the treatment of APL and targeting it towards each affected individual. The investigation for alternative therapies for relapsed APL patients and the introduction of clear, defined treatment guidelines in each risk classified group are of particular concern to be addressed."

Sign up for free Altmetric alerts about this article

DOI - https://doi.org/10.18632/oncotarget.27513

Full text - http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=27513&path[]=90088Correspondence to - Joaquin J. Jimenez - j.jimenez@med.miami.edu

Impact Journals LLC

Related Molecular Biology Articles from Brightsurf:

Likely molecular mechanisms of SARS-CoV-2 pathogenesis are revealed by network biology
Researchers have built an interactome that includes the lung-epithelial cell host interactome integrated with a SARS-CoV-2 interactome.

Cell biology: Your number's up!
mRNAs program the synthesis of proteins in cells, and their functional lifetimes are dynamically regulated.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Scientists find biology's optimal 'molecular alphabet' may be preordained
Life uses 20 coded amino acids (CAAs) to construct proteins.

Molecular biology: Phaser neatly arranges nucleosomes
LMU researchers have, for the first time, systematically determined the positioning of the packing units of the fruit fly genome, and discovered a new protein that defines their relationship to the DNA sequence.

Molecular virologist fights influenza at the molecular level
In research to improve influenza therapies against H7N9 and other influenza strains, Chad Petit and his University of Alabama at Birmingham colleagues have detailed the binding site and mechanism of inhibition for two small-molecule experimental inhibitors of influenza viruses.

The complicated biology of garlic
Researchers generally agree that garlic, used for thousands of years to treat human disease, can reduce the risk of developing certain kinds of cancers, cardiovascular disease, and type 2 diabetes.

Study suggests molecular imaging strategy for determining molecular classifications of NSCLC
Recent findings suggest a novel positron emission tomography (PET) imaging approach determining epidermal growth factor receptor (EGFR) mutation status for improved lung cancer patient management.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Read More: Molecular Biology News and Molecular Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.