Hopkins Scientists Identify Communications

March 20, 1997

Johns Hopkins researchers have identified a protein that helps biochemical "ears" on the surface of brain cells line up close to the areas where nearby brain cells "speak."

The newly identified molecule, named glutamate receptor interacting protein or GRIP, appears to help structures known as neurotransmitter receptors cluster together on some brain cells directly across from the message-transmitting ends of other nerve cells.

"This protein has the potential to affect the ability of nerve cells to communicate and to play a role in learning and memory," says Richard Huganir, Ph.D., professor of molecular biology and genetics and Howard Hughes Medical Institute Investigator.

"This is still speculative, but GRIP might help gather receptors at a frequently used connection between two nerves, ensuring that messages get through more quickly and more strongly at that connection."

Huganir and other neuroscientists believe the brain "creates" memories by adjusting the ability of nerve cells to communicate with each other.

In a paper in this week's Nature, Huganir's team describes finding GRIP through study of the AMPA receptor, which is involved in the transmission of rapid or "excitatory" signals between brain cells. AMPA receptors vary in design, but normally one part of the receptor, called GluR2, is consistent. The lab looked for proteins that bind to the GluR2 c-terminus, a part that sticks down into the nerve cell.

"What we pulled out was GRIP, this very large protein with a unit in it that's repeated seven times," says Huganir. "The repeated unit is a PDZ domain, a new protein structure that's involved in many protein-protein interactions."

The fourth and fifth PDZ domains bind to the end of GluR2's c-terminus, so one GRIP protein may anchor two AMPA receptors.

To test GRIP's connection to receptor clustering, Huganir made nerve cells in culture dishes produce extra copies of the c-terminus. With the extra copies blocking GluR2's ability to bind with GRIP, normal clustering of AMPA receptors decreased dramatically.

Researchers are currently developing a mouse that lacks the gene for GRIP to further study the protein's role. Huganir is also eager to learn what proteins plug into GRIP's five remaining PDZ sockets. "These could be proteins that help message transmission, or they could be structural proteins inside the nerve cell," speculates Huganir.

Other authors on the paper were Hualing Dong, a Ph.D. candidate; Richard O'Brien, M.D.; Eric Fung, an M.D./Ph.D. candidate; Anthony Lanahan, Ph.D.; and Paul Worley, M.D.

Johns Hopkins Medicine

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.