Stem cells appear not to turn into heart cells

March 21, 2004

INDIANAPOLIS -- Two studies published in the online issue of Nature report no evidence to suggest that hematopoietic stem cells, which usually produce blood cells, can turn into heart cells after injection into the heart. These studies raise a cautionary note for interpreting the results of ongoing clinical studies in which hematopoietic stem cells are injected into the heart after a heart attack.

Loren Field, Ph.D., professor of medicine and of pediatrics at the Indiana University School of Medicine and senior author of one of the Nature papers says "these studies demonstrate that the stem cells tested do not form new heart muscle when injected into damaged organs. This suggests that the functional benefit seen in clinical trials may arise from other mechanisms (for example increased blood vessel formation), and raises the possibility that there may be alternative and perhaps more efficacious ways to accomplish this."

Both research teams injected bone-marrow-derived hematopoetic stem cells into the damaged hearts of living mice and used marker proteins to monitor the injected cells. They report that although some of the transplanted cells appeared to survive, they did not appear to differentiate into new heart muscle cells. Instead they matured into cells of the traditional blood lineage.
-end-
Dr. Field's study was funded by the National Institutes of Health.

Indiana University

Related Heart Muscle Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

Heart muscle cells change their energy source during heart regeneration
Researchers from the Hubrecht Institute (KNAW) have found that the muscle cells in the heart of zebrafish change their metabolism during heart regeneration.

New study may have the reason why heart medication gives muscle pain
The McMaster research team found muscle cells treated with statins released the amino acid called glutamate at much higher levels than muscle cells that were untreated.

Vitamin E found to prevent muscle damage after heart attack
Early studies from scientists at the Baker Heart and Diabetes Institute in Australia and Jena University in Germany have found Vitamin E could be used to save the muscle from dying during a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.

Being overweight as a teen may be associated with higher risk of heart muscle disease in adulthood
The risk of developing cardiomyopathy, which often leads to heart failure, increased in adult Swedish men who were even mildly overweight around age 18.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

UA scientist identifies cellular gene signatures for heart muscle regeneration
A research team led by Jared Churko, PhD, director of the University of Arizona iPSC Core in the UA Sarver Heart Center, used a transcriptomic approach -- studying what genes are expressed -- to identify gene signatures of cell subpopulations identified as atrial-like or ventricular-like.

Read More: Heart Muscle News and Heart Muscle Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.