How the alphabet of data processing is growing: Research team generates flying 'qubits'

March 21, 2012

The alphabet of data processing could include more elements than the "0" and "1" in future. An international research team has achieved a new kind of bit with single electrons, called quantum bits, or qubits. With them, considerably more than two states can be defined. So far, quantum bits have only existed in relatively large vacuum chambers. The team has now generated them in semiconductors. They have put an effect in practice, which the RUB physicist Prof. Dr. Andreas Wieck had already theoretically predicted 22 years ago. This represents another step along the path to quantum computing. Together with colleagues from Grenoble and Tokyo, Wieck from the Chair of Applied Solid State Physics reports on the results in the journal Nature Nanotechnology.

Conventional bits

The basic units of today's data processing are the bit states "0" and "1", which differ in their electrical voltage. To encode these states, only the charge of the electrons is crucial. "Electrons also have other properties though" says Wieck, and these are exactly what you need for quantum bits. "The extension from bits to quantum bits can dramatically increase the computational power of computers" says the physicist.

The new bit generation

A quantum bit corresponds to a single electron in a particular state. Together with his colleagues, Wieck used the trajectories of an electron through two closely spaced channels for encoding. In principle, two different states are possible: the electron either moves in the upper channel or in the lower channel - which would then only form a binary system again. According to quantum theory, however, a particle can be in several states simultaneously, that is, it can quasi fly through both channels at the same time. These overlapping states can form an extensive alphabet of data processing.

A recipe for qubits

In order to generate quantum bits with different states, the researchers allowed individual electrons to interfere with each other. This works with the so-called Aharonov-Bohm effect: powered by an external voltage, the electrons fly through a semiconducting solid. Within this solid, their trajectory is first forked and then reunited. Thus, each electron flies simultaneously on both possible paths. When the two paths come together again, there is interference, i.e., the two electron waves overlap and quantum bits with different overlapping states are generated.

Controlling electrons on defined paths

Normally, an electron wave moves through a solid body on many different paths at the same time. Due to impurities in the material, it loses its phase information and thus its ability to encode a particular state. To maintain the phase information, the researchers at the RUB grew a high-purity gallium arsenide crystal and used a dual channel proposed by Wieck more than 20 years ago.

How the dual channel works

An electron reaches the fork via two closely spaced channels. These are coupled with each other (tunnel-coupling), so that the electron flies simultaneously on two different paths. The phases of the electron waves are maintained by the coupling. The same dual channel was also used by the team after the electron waves were reunited at the end of the fork. In this way, they produced quantum bits with clear states which are suitable for encoding information. "Unfortunately, not all the electrons take part in this process, so far it's only a few percent" commented Wieck. "Some students in my department are, however, already working on growing crystals with higher electron densities".
-end-
Bibliographic record

M. Yamamoto, S. Takada, C. Bäuerle, K. Watanabe, A.D. Wieck, S. Tarucha (2012): Electrical control of a solid-state flying qubit, Nature Nanotechnology, doi: 10.1038/nnano.2012.28

Figure online

A figure related to this press release can be found at: http://aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en

Further information

Prof. Dr. Andreas Wieck, Chair of Applied Solid State Physics, Faculty of Physics and Astronomy at the Ruhr-Universität, 44780 Bochum, Germany, Tel.: +49/234/32-28786 andreas.wieck@rub.de

Click for more

Earlier press release on this theme http://aktuell.ruhr-uni-bochum.de/pm2011/pm00287.html.de

Editor

Dr. Julia Weiler

Ruhr-University Bochum

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.