Nav: Home

The invisible world of human perception

March 21, 2016

TORONTO, ON - Stage magicians are not the only ones who can distract the eye: a new cognitive psychology experiment demonstrates how all human beings have a built-in ability to stop paying attention to objects that are right in front of them.

Perception experts have long known that we see much less of the world than we think we do. A person creates a mental model of their surroundings by stitching together scraps of visual information gleaned while shifting attention from place to place. Counterintuitively, the very process that creates the illusion of a complete picture relies on filtering out most of what's out there.

In a paper published in the journal Attention, Perception, & Psychophysics a team of U of T researchers reveal how people have more "top-down" control of what they don't notice than many scientists previously believed.

"The visual system really cares about objects," says postdoctoral fellow J. Eric T. Taylor, who is the lead author on the paper. "If I move around a room, the locations of all the objects - chairs, tables, doors, walls, etc. -- change on my retina, but my mental representation of the room stays the same."

Objects play such a fundamental role in how we focus our attention that many perception researchers believe we are "addicted" to them; we couldn't stop paying attention to objects if we tried. The visual brain guides attention largely by selecting objects -- and this process is widely believed to be automatic.

"I had an inkling that object-based attention cues require a little more will on the observer's part," says Taylor. "I designed an experiment to determine whether you can 'erase' object-based attention shifting."

Taylor put a new twist on an old and highly influential test known as a "two-rectangle experiment." The original experiment was instrumental in demonstrating just how deeply objects are ingrained in how we see the world.

In the original experiment, test subjects stare at a screen with two skinny rectangles. A brief flash of light draws their attention to one end of one rectangle -- say the top end of the left rectangle. Then, a "target" appears, either in the same place as the flash, at the other end of the same rectangle, or at one of the ends of the other rectangle.

Observers are consistently faster at seeing the target if it appeared at the opposite end of the original rectangle than if it appeared at the top of the other rectangle - even though those two points are precisely the same distance from the original flash of light.

The widely accepted conclusion was that the human brain is wired to use objects like these rectangles to focus attention. Alternately referred to as a "bottom-up" control or a "part of our lizard brain," object-based attention cues seemed to evoke an involuntary, uncontrolled response in the human brain.

Taylor and colleague's variations added a new element: test observers went through similar exercises, but they were instructed to hunt targets of a specific colour that either matched or contrasted with the colour of the rectangles themselves.

"They activate a 'control setting' for, say, green, which is a very top-down mental activity," says Taylor. "We found that when the objects matched the target color, people use them to help direct their attention. But when the objects were not the target colour, people no longer use them -- they become invisible."

Test observers are aware of the rectangles on the screen, but when they're seeking a green target among red shapes, those objects no longer affect the speed with which they find it. In everyday life, we continually create such top-down filters, by doing anything from heeding a "Watch for children" sign to scanning a crowd for a familiar face.

"This result tells us that one of the ways we move attention around is actually highly directed rather than automatic," Taylor says. "We can't say exactly what we're missing, but whatever is and is not getting through the filter is not as automatic as we thought."
-end-
MEDIA CONTACTS:

Eric Taylor
Department of Psychology
University of Toronto
josepheric.taylor@utoronto.ca
1-416-978-6587

Jay Pratt
Department of Psychology
University of Toronto
pratt@psych.utoronto.ca
1-416-978-4216

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
1-416-946-7950

University of Toronto

Related Perception Articles:

Vision loss influences perception of sound
People with severe vision loss can less accurately judge the distance of nearby sounds, potentially putting them more at risk of injury.
Why visual perception is a decision process
A popular theory in neuroscience called predictive coding proposes that the brain produces all the time expectations that are compared with incoming information.
How the heart affects our perception
When we encounter a dangerous situation, signals from the brain make sure that the heart beats faster.
Changing how we think about warm perception
Perceiving warmth requires input from a surprising source: cool receptors.
Rhythmic perception in humans has strong evolutionary roots
So suggests a study that compares the behaviour of rodents and humans with respect to the detection rhythm, published in Journal of Comparative Psychology by Alexandre Celma-Miralles and Juan Manuel Toro, researchers at the Center for Brain and Cognition.
Approaching the perception of touch in the brain
More than ten percent of the cerebral cortex are involved in processing information about our sense of touch -- a larger area than previously thought.
Musical perception: nature or nurture?
This is the subject of the research by Juan Manuel Toro (ICREA) and Carlota Pagès Portabella, researchers at the Center for Brain and Cognition, published in the journal Psychophysiology as part of a H2020 project being carried out with Fundació Bial to understand the neuronal bases of musical cognition.
Perception of musical pitch varies across cultures
Unlike US residents, people in a remote area of the Bolivian rain forest usually do not perceive the similarities between two versions of the same note played at different registers, an octave apart.
Olfactory and auditory stimuli change the perception of our body
A pioneering investigation developed by the Universidad Carlos III de Madrid (UC3M) alongside the University of Sussex and University College London, shows that olfactory stimuli combined with auditory stimuli can change our perception of our body.
How brain rhythms organize our visual perception
Imagine that you are watching a crowded hang-gliding competition, keeping track of a red and orange glider's skillful movements.
More Perception News and Perception Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.