Nav: Home

From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis

March 21, 2017

March 21, 2017 - Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant. In a study published today in Genome Research, scientists sequenced and phenotyped multiple B. cenocepacia isolates from 16 CF patients. They found extensive variation among isolates during chronic lung infection as well as changes in clinically relevant bacterial phenotypes.

"We expected, based on anecdotal observations and single strain reports, that the genome of B. cenocepacia was flexible, but we had no idea of the scope and scale of how promiscuous the gene content and genome architecture would be in a modest-sized patient cohort," said co-corresponding author, Corey Nislow, from University of British Columbia.

The researchers collected 215 isolates from 16 CF patients from the Canadian Burkholderia cepacia Complex Research and Referral Repository (CBCCRRR), with samples spanning a period of 2 to 20 years for each patient. Most patients demonstrated significantly decreased lung function during this time. Using whole genome sequencing, the genetic content of all isolates was profiled and genome assemblies were generated for 11 isolates. "By looking at changes in the genome over time, we were able to see patterns -- common themes that help us to better understand how this particular species evolves in its environment and how CF patients become chronically infected," said study co-corresponding author Joshua Chang Mell, from Drexel University College of Medicine.

Similar to previous studies, the researchers found chromic infection of B. cenocepacia resulted in genome reduction, specifically loss of genes encoding non-essential functions, such as putative virulence genes. Phenotypic changes also occurred in a patient over time, including progressive decreases in motility and acute virulence, and changes in growth and biofilm formation. Although infections originated from a single strain, there was large phenotypic variation from samples taken later from the same patient at the same time, suggesting subsequent diversification within an infection.

While some isolates showed strong positive correlation between traits such as motility and biofilm formation, isolates from another patient showed an inverse correlation, suggesting the genetic architecture of the same trait may be distinct across strains.

Testing for associations between genetic variation and phenotypic differences, researchers identified numerous variants in genes associated with motility and biofilm formation. In addition, the loss of three genes previously associated with biofilm formation was correlated with both reduced motility and biofilm formation phenotypes in B. cenocepacia. The genetic determinants of motility and biofilm phenotypes may be promising targets for anti-virulence drugs.

"The outbreaks of B. cenocepacia in Canada and the UK in the 1990's have been largely contained by introduction of infection control measures, but we believe that, rather than 're-fighting the last war', the insights into which genotypic and phenotypic elements are pathogenic will let the B. cenocepacia community be proactive in responding to the next outbreak when it arrives," Nislow said.
-end-
Researchers from the University of British Colombia and Drexel University College of Medicine contributed to this work. The study was funded by the National Institutes of Health, Genome BC, NASA, Cystic Fibrosis Canada, and The UBC Faculty of Pharmacy.

Media Contacts: The authors are available for more information by contacting: Heather Amos, UBC Public Affairs (heather.amos@ubc.ca; +1-604-822-3213 [office]; +1-604-828-3867 [cell]) or Drexel University Communications (lingeno@drexel.edu; +1-215-895-2614; +1-610-717-2777 [cell]).

Interested reporters may obtain copies of the manuscript via email from Dana Macciola, Administrate Assistant, Genome Research (macciol@cshl.edu; +1-516-422-4012).

About the article: The manuscript will be published online ahead of print on 21 March 2017. Its full citation is as follows: Lee AH-Y, Flibotte S, Sinha S, Paiero A, Ehrlich RL, Balashov S, Ehrlich GD, Zlosnik JEA, Mell JC, Nislow C. 2017. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs. Genome Res doi: 10.1101/gr.213363.116

About Genome Research: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. The Press is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit our website at http://cshlpress.org/

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Cold Spring Harbor Laboratory

Related Cystic Fibrosis Articles:

Rare mutations drive cystic fibrosis in Caribbean
Cystic Fibrosis (CF) in the Caribbean is dominated by unusual gene mutations not often observed in previously studied CF populations, according to comprehensive genome sequencing led by physician-scientists at UC San Francisco and Centro de Neumología Pediátrica in San Juan.
Cystic fibrosis carriers at increased risk of digestive symptoms
Researchers have found that carriers of the most common genetic variant that causes cystic fibrosis experience some symptoms similar to those of people with cystic fibrosis.
In cystic fibrosis, lungs feed deadly bacteria
A steady supply of its favorite food helps a deadly bacterium thrive in the lungs of people with cystic fibrosis, according to a new study by Columbia researchers.
Cibio knocks out cystic fibrosis
The fight against cystic fibrosis continues, targeting in particular some of the mutations that cause it.
Hypertonic saline may help babies with cystic fibrosis breathe better
Babies with cystic fibrosis may breathe better by inhaling hypertonic saline, according to a randomized controlled trial conducted in Germany and published in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.
Understanding antibiotic resistance in patients with cystic fibrosis
Patients with cystic fibrosis who carried antibiotic-resistant bacteria in their lungs had significantly lower microbial diversity and more aggressive disease, according to a small study published in Heliyon.
Research shows that cystic fibrosis impacts growth in the womb
New research, published in Thorax, funded by the Cystic Fibrosis Trust has shown that babies with cystic fibrosis (CF) are born weighing less than babies without the condition, even allowing that they are more likely to be born prematurely.
Discovery gives cystic fibrosis researchers new direction
A multi-disciplinary team of researchers at the Novartis Institutes for BioMedical Research (NIBR) and Harvard Medical School (HMS) started out trying to catalogue all the different cells in the airway and the paths they take to become those cells.
Supplemental antioxidants may reduce exacerbations in cystic fibrosis
An antioxidant-enriched vitamin may decrease respiratory exacerbations in people with cystic fibrosis (CF), according to new research published online in April in the American Journal of Respiratory and Critical Care Medicine.
Protein structure could unlock new treatments for cystic fibrosis
Biochemists at the University of Zurich have used cryo-electron microscopy to determine the detailed architecture of the chloride channel TMEM16A.
More Cystic Fibrosis News and Cystic Fibrosis Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.