Nav: Home

Finding the 'ghost particles' might be more challenging than what we thought

March 21, 2017

Dubbed as "ghost particles," neutrinos have no electric charge and their masses are so tiny that they are difficult to observe. The sun, nuclear reactors, supernovae explosions create them, when their nuclei are going through a radioactive decay, known as beta decay. The Center for Underground Physics, within the Institute for Basic Science (IBS) led the Neutrino Experiment for Oscillation at Short Baseline (NEOS) to study the most elusive neutrinos, the so-called 'sterile neutrinos'. Their results are now available in the journal Physical Review Letters.

Neutrinos detected up to now come in three types, or flavors: electron neutrino, muon neutrino, and tau neutrino. Neutrinos can change from one type to another, through a phenomenon called neutrino oscillation. Interestingly, previous experiments measured these oscillations and found an anomaly in the data: the number of measured neutrinos is around 7% lower than the predicted value. Researchers have proposed that these disappearing neutrinos, transform into a fourth type of neutrinos, that is the sterile neutrinos.

The experiment took place inside the Hanbit Nuclear Power Plant in Yeonggwang (South Korea), a standard nuclear reactor that is expected to produces 5.1020 neutrinos per second, as by-products of the reaction that generates nuclear energy.

Firstly, the scientists had to overcome the problem of background signals present in the atmosphere, that could hinder the neutrino detection. One solution was to install the detector underground, as close as possible to the core of the reactor, where the beta decay reaction is taking place. In this case, the neutrino detector was installed 24 meters from the core, in a structure called tendon gallery. The detector was protected by several layers of lead blocks, which shield the detector from gamma rays, and of borated polyethylene to block neutrons.

Scientists measured the number of electron neutrinos using a detector, which contains a called liquid scintillator, that produces a light signal when a neutrino interacts with it. They then compared their results with data obtained from other experiments and theoretical calculations. In some cases NEOS results agreed with the previous data, but in other cases they differed. For example, the data show that there is an unexplained abundance of neutrinos with energy of 5 MeV (Mega-electron Volts), dubbed "the 5 MeV bump", much higher than the one predicted from theoretical models.

The experiment succeeded in measuring electron neutrinos with great precision and low background signals. However, sterile neutrinos were not detected and remain some of the most mysterious particles of our Universe. The results also show that it is necessary to set up new limits for the detection of sterile neutrinos, since the oscillations that convert electron neutrinos into sterile neutrinos are probably less than previously shown. "These results do not mean that sterile neutrinos do not exist, but that they are more challenging to find than what was previously thought," explains OH Yoomin, one of the authors of this study.

Institute for Basic Science

Related Neutrinos Articles:

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.
Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.
Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.
Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?
T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.
Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.
Radio waves detect particle showers in a block of plastic
A cheap technique could detect neutrinos in polar ice, eventually allowing researchers to expand the energy reach of IceCube without breaking the bank.
APS tip sheet: Harnessing radar echoes for future neutrino detection
New high energy neutrino detection method could lead to a neutrino telescope able to observe neutrinos with energies beyond the current observable range.
Borexino sheds light on solar neutrinos
For more than ten years, the Borexino Detector located 1,400 meters below surface of the Italian Gran Sasso massif has been exploring the interior of our Sun.
A first 'snapshot' of the complete spectrum of neutrinos emitted by the sun
About 99 percent of the sun's energy emitted as neutrinos is produced through nuclear reaction sequences initiated by proton-proton (pp) fusion in which hydrogen is converted into helium, say scientists including physicist Andrea Pocar at the University of Massachusetts Amherst.
More Neutrinos News and Neutrinos Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.