Nav: Home

Electrons used to control ultrashort laser pulses

March 21, 2017

We may soon get better insight into the microcosm and the world of electrons. Researchers at Lund University and Louisiana State University have developed a tool that makes it possible to control extreme UV light - light with much shorter wavelengths than visible light. The new method uses strong laser pulses to direct the short bursts of light.

Something very exciting happens when light hits electrons: they start to move, and when they do that they reemit the light again. The electron, which is very small, can easily follow the fast light oscillations. However, reemitting the light takes some time, and during that time the electrons can be controlled so that they emit the light in a different direction.

"This means we can control the properties of the light, for instance change the direction, change the pulse duration, split the light or focus it, " says Johan Mauritsson.

Since he and his colleagues control the electrons with another laser pulse, is it possible to precisely control the timing between the two pulses - and set it to exactly what they want it to be.

"What makes this field of research so interesting is that we still do not know exactly what happens when light hits a material. What is, for example, the first thing that happens when sunlight hits a flower? We do not know all the details", says Johan Mauritsson, researcher in the field of attosecond science at Lund University in Sweden.

Yet it isn't that strange that many details are still unknown. You cannot probe shorter time intervals than the time it takes for the light to make one oscillation. This makes it impossible to use visible light to follow electron dynamics, since one oscillation takes about 2 femtoseconds, or 10-15 seconds. During that time, the electron circles the nuclei more than 13 times. We therefore need light that oscillates much faster, i.e. with shorter wavelengths.

This technique to control the light is new and there is still a lot to improve.

"Right now we are working on improving the time resolution with various experiments with XUV light, for instance for free electron lasers. However, our main focus is developing the technique so we can learn more about the light/electron interaction. But who knows, in 50 years we may all be using ultrafast optics in our everyday lives", concludes Samuel Bengtsson, PhD student in atomic physics.
-end-


Lund University

Related Electrons Articles:

Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
More Electrons News and Electrons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...