Nav: Home

Quantum dots illuminate transport within the cell

March 21, 2017

The quantum dots used by the researchers are particles of semi-conducting material just a few nanometres wide, and are the subject of great interest because of their potential for use in photovoltaic cells or computers. "The great thing about these particles is that they absorb light and emit it in a different colour," explains research leader Lukas Kapitein. "We use that characteristic to follow their movements through the cell with a microscope."

But to do so, the quantum dots had to be inserted into the cell. Most current techniques result in dots that are inside microscopic vesicles surrounded by a membrane, but this prevents them from moving freely. However, the researchers succeeded directly delivering the particles into cultured cells by applying a strong electromagnetic field that created transient openings in the cell membrane. In their article, they describe how this electroporation process allowed them to insert the quantum dots inside the cell.

Extremely bright

Once inserted, the quantum dots begin to move under the influence of diffusion. Kapitein: "Since Einstein, we have known that the movement of visible particles can provide information about the characteristics of the solution in which they move. Previous research has shown that particles move fairly slowly inside the cell, which indicates that the cytoplasm is a viscous fluid. But because our particles are extremely bright, we could film them at high speed, and we observed that many particles also make much faster movements that had been invisible until now. We recorded the movements at 400 frames per minute, more than 10 times faster than normal video. At that measurement speed, we observed that some quantum dots do in fact move very slowly, but others can be very fast."

Kapitein is especially interested in the spatial distribution between the slow and fast quantum dots: at the edges of the cell, the fluid seems to be very viscous, but deeper in the cell he observed much faster particles. Kapitein: "We have shown that the slow movement occurs because the particles are caught in a dynamic network of protein tubules called actin filaments, which are more common near the cell membrane. So the particles have to move through the holes in that network."

Motor proteins

In addition to studying this passive transport process, the researchers have developed a technique for actively moving the quantum dots by binding them to a variety of specific motor proteins. These motor proteins move along microtubuli, the other filaments in the cytoskeleton, and are responsible for transport within the cell. This allowed them to study how this transport is influenced by the dense layout of the actin network near the cell membrane. They observed that this differs for different types of motor protein, because they move along different types of microtubuli. Kapitein: "Active and passive transport are both very important for the functioning of the cell, so several different physics models have been proposed for transport within the cell. Our results show that such physical models must take the spatial variations in the cellular composition into consideration as well."

Eugene A. Katrukha, Marina Mikhaylova, Hugo X. van Brakel, Paul M. van Bergen en Henegouwen, Anna Akhmanova, Casper C. Hoogenraad, Lukas C. Kapitein.
Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots.
Nature Communications, 21 March 2017, DOI 10.1038/NCOMMS14772

Utrecht University

Related Quantum Dots Articles:

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
ICFO develops the first graphene-based camera, capable of imaging visible and infrared light at the same time.
Platelets instead of quantum dots
A team of researchers led by ETH Zurich professor David Norris has developed a model to clarify the general mechanism of nanoplatelet formation.
Quantum dots illuminate transport within the cell
Biophysicists from Utrecht University have developed a strategy for using light-emitting nanocrystals as a marker in living cells.
'Flying saucer' quantum dots hold secret to brighter, better lasers
By carefully controlling the size of the quantum dots, the researchers can 'tune' the frequency, or color, of the emitted light to any desired value.
'Flying saucer' colloidal quantum dots produce brighter, better lasers
A multi-institutional team of researchers from Canada and the US has demonstrated steady state lasing with solution-processed nanoparticles called 'colloidal quantum dots,' an important step on the path to improving laser tools for fiber optics, video projectors and more accurate medical testing technology.
Quantum dots with impermeable shell: A powerful tool for nanoengineering
Depending on their applications, quantum dots need to be tailored in terms of their structure and properties.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
A new form of hybrid photodetectors with quantum dots and graphene
ICFO researchers develop a hybrid photodetector comprising an active colloidal quantum dot photodiode integrated with a graphene phototransistor.
ORNL demonstrates large-scale technique to produce quantum dots
ORNL demonstrates a method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications.
First single-enzyme method to produce quantum dots revealed
Three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method.

Related Quantum Dots Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...