Evidence for a giant flood in the central Mediterranean Sea

March 21, 2018

Marine scientists have uncovered evidence of one of the largest floods in Earth's history in the central Mediterranean seafloor.

The flood, known as the Zanclean flood, is thought to have ended the Messinian Salinity Crisis (MSC), a period during which the Mediterranean Sea became partially dried up. Due to shrinkage of its connection with the Atlantic Ocean, the Mediterranean Sea was transformed into a giant saline lake that was partially evaporated by the dry climate of the region, six million years ago.

One of the theories proposed to explain the refilling of the Mediterranean Sea at the end of the MSC some 640,000 years later is a catastrophic flood through the Strait of Gibraltar.

By examining the most comprehensive collection of seafloor data from offshore eastern Sicily and the Maltese Islands, an international team of geoscientists has now discovered an extensive buried mass of material that is thought to have been eroded and transported by the Zanclean flood. This mass covers an area equivalent to that of the island of Crete and is up to 900 m thick in places. The passage of the Zanclean flood across the Malta Escarpment - a long submarine limestone cliff - resulted in a 1.5 km high waterfall (equivalent to five times the height of the Eiffel Tower). This water eroded a 5 km wide and 20 km long canyon on the seafloor that is still preserved underwater offshore the city of Noto (south-east Sicily).

This discovery is important because it demonstrates that the level of the Mediterranean Sea during the MSC dropped by more than a thousand metres, and that the end of the MSC coincided with a catastrophic flood that affected the entire Mediterranean Sea.
-end-
This study, which was recently published in the international journal Scientific Reports, was led by Prof. Aaron Micallef and Dr Angelo Camerlenghi, and involved scientists from the University of Malta (Malta), OGS (Italy), ICTJA-CSIC (Spain), University of Brest/CNRS (France), University of Catania (Italy), University of Kiel and GEOMAR (Germany). The work was supported by Marie Curie Actions, the European Research Council and the MEDSALT COST Action.

University of Malta

Related Seafloor Articles from Brightsurf:

Microbial diversity below seafloor is as rich as on Earth's surface
For the first time, researchers have mapped the biological diversity of marine sediment, one of Earth's largest global biomes.

Deep-seabed mining lastingly disrupts the seafloor food web
Deep-seabed mining is considered a way to address the increasing need of rare metals.

How the seafloor of the Antarctic Ocean is changing - and the climate is following suit
Experts have reconstructed the depth of the Southern Ocean at key phases in the last 34 million years of the Antarctic's climate history

Coastal cities leave up to 75% of seafloor exposed to harmful light pollution
New research is the first in the world to quantify the extent to which biologically important artificial light is prevalent on the seafloor and could, in turn, be having a detrimental effect on marine species.

Marine microorganisms: How to survive below the seafloor
Foraminifera, an ancient and ecologically highly successful group of marine organisms, are found on and below the seafloor.

Four new species of giant single-celled organisms discovered on Pacific seafloor
Two new genera and four new species of giant, single-celled xenophyophores (protozoans belonging to a group called the foraminifera) were discovered in the deep Pacific Ocean during a joint project between scientists at the National Oceanography Centre, UK; the University of Hawai'i and the University of Geneva.

Delicate seafloor ridges reveal the rapid retreat of past Antarctic ice
Detailed seafloor mapping of submerged glacial landforms finds that Antarctic ice sheets in the past retreated far faster than the most rapid pace of retreat observed today, exceeding even the most extreme modern rates by at least an order of magnitude, according to a new study.

Window to another world: Life is bubbling up to seafloor with petroleum from deep below
Microbial life is bubbling up to the ocean floor along with fluids from deeply buried petroleum reservoirs, reports a team of scientists from the University of Calgary and the Marine Biological Laboratory, Woods Hole.

Scientists find highest ever level of microplastics on seafloor
An international research project has revealed the highest levels of microplastic ever recorded on the seafloor, with up to 1.9 million pieces in a thin layer covering just 1 square meter.

Seafloor currents may direct microplastics to biodiversity hotspots of the deep
Microplastic particles entering the sea surface were thought to settle to the seafloor directly below them, but now, a new study reveals that slow-moving currents near the bottom of the ocean direct the flow of plastics, creating microplastic hotpots in sediments of the deep sea.

Read More: Seafloor News and Seafloor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.