Nav: Home

Alpine tundra releases long-frozen CO2 to the atmosphere, exacerbating climate warming

March 21, 2019

Thawing permafrost in high-altitude mountain ecosystems may be a stealthy, underexplored contributor to atmospheric carbon dioxide emissions, new University of Colorado Boulder research shows.

The new findings, published today in the journal Nature Communications, show that alpine tundra in Colorado's Front Range emits more CO2 than it captures annually, potentially creating a feedback loop that could increase climate warming and lead to even more CO2 emissions in the future.

A similar phenomenon exists in the Arctic, where research in recent decades has shown that melting permafrost is unearthing long-frozen tundra soil and releasing CO2 reserves that had been buried for centuries.

"We wondered if the same thing could be happening in alpine terrain," said John Knowles, lead author of the new study and a former doctoral student in CU Boulder's Department of Geography and a researcher at the Institute of Arctic and Alpine Research (INSTAAR). "This study is a strong indication that that is indeed the case."

Forests have long been considered vital carbon 'sinks,' sequestering more carbon than they produce and helping to mitigate global CO2 levels. As part of the Earth's carbon cycle, trees and other vegetation absorb CO2 via photosynthesis while microbes (which decompose soil nutrients and organic material) emit it back to the atmosphere via respiration, just as humans release CO2 with every breath.

Melting permafrost, however, changes that equation. As previously frozen tundra soil thaws and becomes exposed for the first time in years, its nutrients become freshly available for microbes to consume. And unlike plants, which go dormant in winter, microscopic organisms can feast all year long if environmental conditions are right.

To study this effect in alpine conditions, researchers measured the surface-to-air CO2 transfer over seven consecutive years (2008-2014) at the Niwot Ridge Long Term Ecological Research (LTER) site in Colorado, a high-altitude research project funded by the National Science Foundation that has been in continuous operation for over 35 years. The team also collected samples of soil CO2 and used radiocarbon dating to estimate how long the carbon forming that CO2 had been present in the landscape.

The study showed, somewhat surprisingly, that barren, wind-scoured tundra landscapes above 11,000 feet emitted more CO2 than they captured each year, and that a fraction of that CO2 was relatively old during the winter, the first such finding of its kind in temperate latitudes. The findings suggest higher-than-expected year-round microbial activity, even in the absence of a deep insulating snowpack.

"Microbes need it to be not too cold and not too dry, they need liquid water," said Knowles, now a researcher at the University of Arizona. "The surprise here is that we show winter microbial activity persisting in permafrost areas that don't collect much insulating snowpack due to wind stripping it away."

While the alpine tundra's net CO2 contributions are small compared to a forest's sequestration capability, the newly-documented effect may act as something of a counterweight, hampering atmospheric CO2 reductions from mountain ecosystems in general. The findings will need to be factored in to future projections of global warming, Knowles said.

"Until now, little was known about how alpine tundra behaved with regard to this balance, and especially how it could continue emitting CO2 year after year" Knowles said. "But now, we have evidence that climate change or another disturbance may be liberating decades-to-centuries-old carbon from this landscape."
-end-
Additional co-authors of the study include Peter Blanken of CU Boulder's Department of Geography; Mark Williams of CU Boulder and INSTAAR; and Corey Lawrence of the U.S. Geological Survey. The National Science Foundation provided funding for the research.

University of Colorado at Boulder

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...