Nav: Home

Artificial chemical DNA switch helps understand epigenetic mechanisms

March 21, 2019

Researchers from the Czech Academy of Sciences and Charles University constructed an artificial chemical DNA switch and made the first step towards artificial epigenetics - targeted switching on and off of genes. Their paper was recently published in the journal Chemical Science.

The genetic information contained in DNA is transferred during two consecutive processes separated both in space and time that lead to the formation of proteins. In the first process, so-called transcription, the complete information of one gene is transcribed to an RNA molecule, known as messenger RNA (mRNA), which in the second step serves as a template for synthesis of a specific protein within the cell during subsequent translation. Above this basic level of genetic information, however, there is another one, so-called epigenetics, that determines which genes are active at a given time and undergoing transcription to mRNA and which ones, on the contrary, are switched off and not undergoing transcription. This switching on and switching off is regulated by several mechanisms. One of the most important are chemical modifications to the DNA bases, i.e. DNA methylation and demethylation, during which a methyl group is added to or removed from a given location in the DNA. These very small modifications to the DNA regulate transcription to RNA and the formation of the respective proteins.

A team of scientists from the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, the Faculty of Science at Charles University, and the Institute of Microbiology of the Czech Academy of Sciences headed by Prof. Michal Hocek and Dr. Libor Krásný have now used artificially prepared modified DNA to uncover the secret behind regulation of these epigenetic changes.

In their previous article, the researchers published a surprising finding: modified pyrimidine nucleobases containing a hydroxymethyl group increase transcription with bacterial RNA polymerase. These hydroxymethylated pyrimidines occur naturally as minor bases in the genomes of some organisms. Now, however, the scientists prepared masked derivatives of these bases containing a special photoremovable protecting group, which results in the entire modified DNA being off from the standpoint of transcription. Following brief illumination with visible light (wavelength 400 nm), the masking groups are removed and transcription switched on. In the next step, however, it is possible to switch transcription off again by means of another reaction: the enzymatic phosphorylation of hydroxymethyl groups.

This conceptually novel approach is unique namely because it induces switching through chemical reactions in the major groove of DNA; thus, in principle, it could establish another artificial level of epigenetic regulation that could function in parallel with natural epigenetics, whereas it would be possible through fairly simple chemical reactions, which under normal circumstances don't take place in a cell, to influence the switching on and off of genes and thereby the formation of specific proteins, which, for example, play a role in the development or treatment of various diseases.

So far, this new method of switching gene expression, which the scientists published in the journal Chemical Science, has only been demonstrated in vitro (in a test tube), and its application in living cells or organisms will require overcoming a number of other obstacles. To this point, the results have given rise to many more questions than answers, but they open the door to several new and interesting research paths. Currently, the most attractive of them is the hypothesis that this might be the mechanism by which bacteria effectively prevent transcription of virus DNA (through phosphorylation of virus DNA, which in some viruses is naturally hydroxymethylated) as well as the possibility of targeted regulation of gene expression, which would be time limited. Having been modified in this way, the DNA would be switched on only for the desired length of time, and the natural instability of such DNA in the cell would prevent long-term adverse effects. Research in this area will continue, and in the future, it could lead to a significant breakthrough in understanding the mechanisms relating to how organisms regulate gene expression.
-end-
Original paper: Z. Vaníková, M. Janoušková, M. Kambová, L. Krásný and M. Hocek, Switching transcription with bacterial RNA polymerase through photocaging, photorelease and phosphorylation reactions in the major groove of DNA, Chem. Sci., 2019, DOI: 10.1039/C9SC00205G.

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...