Nav: Home

NIST researchers boost intensity of nanowire LEDs

March 21, 2019

Nanowire gurus at the National Institute of Standards and Technology (NIST) have made ultraviolet light-emitting diodes (LEDs) that, thanks to a special type of shell, produce five times higher light intensity than do comparable LEDs based on a simpler shell design.

Ultraviolet LEDs are used in a growing number of applications such as polymer curing, water purification and medical disinfection. Micro-LEDs are also of interest for visual displays. NIST staff are experimenting with nanowire-based LEDs for scanning-probe tips intended for electronics and biology applications.

The new, brighter LEDs are an outcome of NIST's expertise in making high-quality gallium nitride (GaN) nanowires. Lately, researchers have been experimenting with nanowire cores made of silicon-doped GaN, which has extra electrons, surrounded by shells made of magnesium-doped GaN, which has a surplus of "holes" for missing electrons. When an electron and a hole combine, energy is released as light, a process known as electroluminescence.

The NIST group previously demonstrated LEDs that produced light attributed to electrons injected into the shell layer to recombine with holes. The new LEDs have a tiny bit of aluminum added to the shell layer, which reduces losses from electron overflow and light reabsorption.

As described in the journal Nanotechnology, the brighter LEDs are fabricated from nanowires with a so-called "p-i-n" structure, a tri-layer design that injects electrons and holes into the nanowire. The addition of aluminum to the shell helps confine electrons to the nanowire core, boosting the electroluminescence fivefold.

"The role of the aluminum is to introduce an asymmetry in the electrical current that prevents electrons from flowing into the shell layer, which would reduce efficiency, and instead confines electrons and holes to the nanowire core," first author Matt Brubaker said.

The nanowire test structures were about 440 nanometers (nm) long with a shell thickness of about 40 nm. The final LEDs, including the shells, were almost 10 times larger. Researchers found that the amount of aluminum incorporated into fabricated structures depends on nanowire diameter.

Group leader Kris Bertness said at least two companies are developing micro-LEDs based on nanowires, and NIST has a Cooperative Research and Development Agreement with one of them to develop dopant and structural characterization methods. The researchers have had preliminary discussions with scanning-probe companies about using NIST LEDs in their probe tips, and NIST plans to demonstrate prototype LED tools soon.

The NIST team holds U.S. Patent 8,484,756 on an instrument that combines microwave scanning probe microscopy with an LED for nondestructive, contactless testing of material quality for important semiconductor nanostructures such as transistor channels and individual grains in solar cells. The probe could also be used for biological research on protein unfolding and cell structure.
-end-
Paper: M.D. Brubaker, K.L. Genter, A. Roshko, P.T. Blanchard, B.T. Spann, T.E. Harvey and K. A. Bertness. UV LEDs Based on p-i-n Core-Shell AlGaN/GaN Nanowire Heterostructures Grown by N-polar Selective Area Epitaxy. Nanotechnology. Published March 21, 2019. DOI: 10.1088/1361-6528/ab07ed

National Institute of Standards and Technology (NIST)

Related Nanowires Articles:

Nanowires, the future of electronics
The current demand for small-sized electronic devices is calling for fresh approaches in their design.
Improving silver nanowires for FTCEs with flash light interactions
A Korean research team led by Professor Keon Jae Lee of the Materials Science and Engineering Department at KAIST and Dr.
UC researchers use gold coating to control luminescence of nanowires
In electronics, the race for smaller is huge. Physicists at the University of Cincinnati are working to harness the power of nanowires, microscopic wires that have the potential to improve solar cells or revolutionize fiber optics.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Nanowires as sensors in new type of atomic force microscope
A new type of atomic force microscope (AFM) uses nanowires as tiny sensors.
Tiny crystals and nanowires could join forces to split water
Scientists are pursuing a tiny solution for harnessing one of the world's most abundant sources of clean energy: water.
A versatile method to pattern functionalized nanowires
A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices.
Newly discovered organic nanowires leave manmade technologies in their dust
A microbial protein fiber discovered by a Michigan State University scientist transports charges at rates high enough to be applied in manmade nanotechnologies.
New research shows how nanowires can be formed
In an article published in Nature today, researchers at Lund University in Sweden show how different arrangements of atoms can be combined into nanowires as they grow.
New type of nanowires, built with natural gas heating
A new simple, cost-effective approach that may open up an effective way to make other metallic/semiconducting nanomaterials.

Related Nanowires Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".