Nav: Home

Blue Brain solves a century-old neuroscience problem

March 21, 2019

"For nearly 100 years, scientists have been trying to name cells. They have been describing them in the same way that Darwin described animals and trees. Now the Blue Brain Project has developed a mathematical algorithm to objectively classify the shapes of the neurons in the brain," explains Professor Henry Markram, Blue Brain's Founder and Director. "This will allow the development of a standardized taxonomy [classification of cells into distinct groups] of all cells in the brain, which will help researchers compare their data in a more reliable manner."

The team, with lead scientist Lida Kanari, have developed an algorithm to distinguish the different shapes of the most common type of neuron in the neocortex - the pyramidal cells. Pyramidal cells are distinctively tree-like cells that make up 80% of the neurons in the neocortex and, like antennas, collect information from other neurons in the brain. Basically, they are the redwoods of the forests of trees in the brain. They are excitatory, sending waves of electrical activity through the network, as we perceive, act, and feel.

The father of modern neuroscience, Ramón y Cajal, first drew pyramidal cells over 100 years ago, by looking at them under a microscope. Yet, up until now, scientists have not reached a consensus on the types of pyramidal neurons. Anatomists have been assigning names and debating the different types for the past century, while neuroscience has been unable to tell for sure which types of neurons are subjectively characterized. Even for visibly distinguishable neurons, there is no common ground to consistently define morphological types.

Seventeen types of pyramidal cells

The study from Blue Brain proves for the first time that objective classification of these pyramidal cells is possible, by applying tools from algebraic topology, the branch of mathematics that studies the shape, connectivity, and the emergence of global structure from local constraints.

Blue Brain has pioneered the use of algebraic topology to tackle a wide range of neuroscience problems, and with this study has once again demonstrated its effectiveness. In collaboration with Professors Kathryn Hess at EPFL and Ran Levi from the University of Aberdeen, Blue Brain developed an algorithm, which they then used to objectively classify seventeen types of pyramidal cells in the rat somatosensory cortex. The topological classification does not require expert input, and is proven to be robust.

The structure of most neurons resembles a complex tree, with multiple branches connecting to other neurons and communicating via electrical signals. If we keep the longest (persistent) components of the neuron structure and decompose the smaller branches, we can transform its tree-like structure into a barcode - a mathematical object that can be used as input for any machine-learning algorithm that will classify the neurons into distinct groups.

"Species" of brain cells

Any neuron classification process is plagued by this question: are two cells that look different just part of a continuum of gradually changing differences (like different "strains" of a species, e.g. different types of dogs) or are they really different "species" of neurons (e.g. dogs, cats, elephants, etc.)? In other words, are they discrete or continuous morphological variations of each other? This can be answered by using the new topological classification and grouping the different "species" of brain cells, each with its own characteristic "strains".

"The Blue Brain Project is digitally reconstructing and simulating the brain, and this research provides one of the solid foundations needed to put all the types of neurons together," explains Kanari. "By removing the ambiguity of cell types, the process of identifying the morphological type of new cells will become fully automated."

This breakthrough can benefit the entire neuroscience community, as it will provide a more sophisticated understanding of cell taxonomy, and a reliable comparative method. The objective definition of morphological types is an essential first step towards a better understanding of the brain's basic building blocks: how their structure is related to their function, and how local properties of neurons are connected to their long-range projections. This method provides a universal descriptor of trees, meaning that it can be used for the consistent description of all cell types in the brain, including neurons of all brain regions and glia cells.
-end-
The article in Open Access can be found here: https://academic.oup.com/cercor/article/29/4/1719/5304727

Ecole Polytechnique Fédérale de Lausanne

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...