Nav: Home

Revealing the plant genes that shaped our world

March 21, 2019

Palo Alto, CA--The creation of new library of mutants of the single-celled photosynthetic green alga, Chlamydomonas reinhardtii enabled a Carnegie- and Princeton University-led team of plant scientists to identify more than 300 genes that are potentially required for photosynthesis. Photosynthesis is the process by which plants, algae, and some bacteria convert energy from sunlight into carbohydrates--filling our planet's atmosphere with oxygen as a byproduct.

Their findings are published this week in Nature Genetics.

Chlamydomonas represents a group of algae that are found around the globe in fresh and saltwater, moist soil, and even snow. They are photosynthetic and readily grow in the lab, even in darkness if given the right nutrients. This makes Chlamydomonas an excellent research tool for plant biologists, especially for those interested in the genetics of the photosynthetic apparatus, as well as many other aspects of plant biochemistry, such as responses to light and stress.

In this study, the research team created a library of about 80,000 Chlamydomonas mutants which they used to identify 303 genes thought to participate in photosynthesis. Of these, 65 encode proteins that were already known to play a role in photosynthesis. The remaining 238 genes had no previously known role in photosynthesis, making them targets for further research. Twenty-one of them are considered high-priorities for additional investigations.

"This work opens the door to a new understanding of the various processes associated with photosynthetic function, which are of fundamental importance to our planet's food supply, as well as, of course, to replenishing the atmospheric oxygen that we breathe," said Carnegie co-author Arthur Grossman.

The research team's findings indicate that nearly half of the genes that are necessary for plants to create carbohydrates by photosynthesis have not yet been characterized.

"This is remarkable, considering that genetic research on this fundamental process began in the 1950s," said Princeton co-author Martin Jonikas, who was formerly at Carnegie. "Our library demonstrates how much work remains to be done in revealing mechanisms underlying the biochemical process that shaped our planet's history and created the conditions that allowed life to thrive here."

Zhiyong Wang, Acting Director of Carnegie's Department of Plant Biology, added: "This work really illustrates the power of using high-throughput genetic techniques to address major issues in biology."
-end-
This project was supported by the U.S. National Science Foundation, the U.S. National Institutes of Health, a German Academic Exchange Service research fellowship, Simons Foundation fellowships, and a Swiss National Science Foundation Advanced PostDoc Mobility fellowship.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Photosynthesis Articles:

Scientists design molecular system for artificial photosynthesis
A molecular system for artificial photosynthesis is designed to mimic key functions of the photosynthetic center in green plants -- light absorption, charge separation, and catalysis -- to convert solar energy into chemical energy stored by hydrogen fuel.
Photosynthesis in the dark? Unraveling the mystery of algae evolution
Researchers compared the photosynthetic regulation in glaucophytes with that in cyanobacteria, to elucidate the changes caused by symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways.
Mechanism behind the electric charges generated by photosynthesis
Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water.
Research shows global photosynthesis on the rise
Researchers found a global historic record by analyzing gases trapped in Antarctic snow to see the rapid rise in photosynthesis over the past 200 years.
Artificial photosynthesis steps into the light
Rice University leads a project to create an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for advanced solar cells.
New study shines light on photosynthesis
Researchers have solved a longstanding mystery in photosynthesis, a process used by plants and other organisms to convert light energy into chemical energy.
Study: Viruses support photosynthesis in bacteria -- an evolutionary advantage?
Viruses propagate by infecting a host cell and reproducing inside.
Accelerated chlorophyll reaction in microdroplets to reveal secret of photosynthesis
The research team of DGIST's fellow Hong-Gil Nam, discovered the natural control of chlorophyll activity.
Mechanism for photosynthesis already existed in primeval microbe
A Japanese research team has discovered an evolutionary model for the biological function that creates CO2 from glucose in photosynthesis.
WSU researchers discover unique microbial photosynthesis
Researchers at Washington State University have discovered a new type of cooperative photosynthesis that could be used in engineering microbial communities for waste treatment and bioenergy production.

Related Photosynthesis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".