Nav: Home

Making solar cells is like buttering bread

March 21, 2019

Formamidinium lead iodide is a very good material for photovoltaic cells, but getting the correct and stable crystal structure is a challenge. The techniques developed so far have produced rather poor results. However, University of Groningen scientists, led by Professor of Photophysics and Optoelectronics Maria Antonietta Loi, have now cracked it - using a blade and a dipping solution. The results were published in the journal Nanoscale on 15 March 2019.

Formamidinium lead iodide (FAPbI3) is a perovskite, a crystal with a distinctive structure. Perovskites are named after a mineral that has the chemical formula ABX3. In an idealized cubic unit cell, the X position is occupied by anions that form an octahedron with a central cation in the B position while the corners of the cube are occupied by the A position cations (see picture).

Industrial production

'This formamidinium lead iodide material has very good characteristics, but the A position formamidinium ion causes instability in the structure,' explains Loi. 3D films made from this material most often turn out to be a mixture of a photoactive and a photoinactive phase, the latter being detrimental to the final application. Loi therefore set her PhD student Sampson Adjokatse to work to find a solution.

After trying different strategies, he found one that worked. 'And most importantly, one that is scalable and could be used for industrial production,' says Loi. After all, solar cells must be produced in large panels and it is very important to find a good and cheap technique to do so. Adjokatse started with a different perovskite, in which the formamidinium was replaced by a larger 2 phenylethylammonium molecule, and in doing so formed a 2D perovskite. This material was deposited as a thin film using the 'doctor-blade' technique, related to techniques widely used in industrial processes such as printing.


'Basically, you spread the material onto a substrate using a blade,' explains Adjokatse. The blade can be set to produce a film with a thickness of around 500 nanometres, creating the 2D perovskite layer. 'The important point is that these films are very smooth with large crystalline domains of up to 15 micrometres,' says Adjokatse. The smooth 2D films based on 2-phenylethylammonium lead iodide were used as a template to produce 3D formamidinium lead iodide films.

This was achieved by dipping the 2D film in a solution containing formamidinium iodide. This resulted in the growth of a 3D film through 'cation exchange', where formamidinium took the place of 2 phenylethylammonium. 'These films show much higher photoluminescence compared to reference 3D formamidinium lead iodide films and show increased stability when exposed to light or moisture,' says Loi. 'This means that we now have a method for the production of high-quality films for perovskite solar cells using an industrially scalable technique.'
Reference: Sampson Adjokatse, Hong-Hua Fang, Herman Duima and Maria Antonietta Loi : Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale, online 15 March 2019

University of Groningen

Related Solar Cells Articles:

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
More Solar Cells News and Solar Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at