Nav: Home

Study finds cells maintain a complete molecular 'memory' of their embryonic origins

March 21, 2019

In research that casts cells as curators of their own history, Dana-Farber Cancer Institute scientists have discovered that adult tissues retain a memory, inscribed on their DNA, of the embryonic cells from which they arose. The discovery led to one even more intriguing - that the memory is fully retrievable: under certain conditions, cells can play the story of their development in reverse to switch on genes that were active in the fetal state.

The findings, published online today by the journal Molecular Cell, overturn the prevailing scientific assumption that adult tissues bear little trace of their embryonic origins. The discovery is especially relevant to the field of regenerative medicine, because it suggests that cells from patients may be coaxed into an earlier stage of development and then allowed to mature into adult tissues that can be used to replace diseased or failing organs. It also holds promise for cancer research, particularly on the ability of cancer cells to activate long-unused genes to help them spread throughout the body.

"We discovered that adult cells maintain a catalog of all of the genes in use early in development - a record of the stage in which organs and tissues are formed within the embryo," says the senior author of the new study, Ramesh Shivdasani, MD, PhD, of Dana-Farber, Brigham and Women's Hospital, Harvard Medical School, and the Harvard Stem Cell Institute. "Beyond the sheer existence of this archive, we were surprised to find that it doesn't remain permanently locked away but can be accessed by cells under certain conditions. The implications of this discovery for how we think about cells' capabilities, and for the future treatment of degenerative and other diseases, are potentially profound."

The "embryonic memory" discovered by Shivdasani and his colleagues takes the form of molecules called methyl groups that bind to and detach from the DNA within cells. The placement of these methyl groups - which portion of DNA they bind to, and in what numbers - determines which genes are active and which are not. The arrangement of methyl groups in a given section of DNA is known as its methylation pattern.

In the new study, researchers focused on the methylation pattern of regions of DNA known as enhancers. Enhancers can be thought of as keys for switching genes on and off. To activate a gene, DNA forms a loop that brings an enhancer close to the coding portion of the gene - the section that contains the blueprint for making a protein. Then, along with other regions of DNA and specialized proteins, the genetic code embedded in DNA is converted into RNA.

Over the course of embryonic and fetal development, as cells evolve to take on the specific characteristics of the hundreds of types of adult tissues, cells "are constantly making choices about what kind of cell they will become," Shivdasani explains. "This process, known as cell differentiation, involves cells flipping different genes on and off using different enhancers." At each stage of development, particular sets of enhancers become active, much as individual sections of an orchestra play during different portions of a symphony.

By the time a child is fully formed, the set of active enhancers remains largely unchanged for the remainder of life (although the liver, for example, becomes larger as a child grows, its identity as a liver is consistent). For the most part, enhancers that were used early in development but are now idle "look like they've been shut down," Shivdasani says. "They don't seem to have the features of activity."

One of the distinguishing features of enhancers is that certain sections of them - where the C molecule of the genetic code is followed by the G molecule - are largely shorn of methyl groups, a state known as hypomethylation. This is true even of enhancers that have been shut down after their role in embryonic development ended. Scientists didn't know, however, how extensively cells preserve this memory of their earliest incarnations, and whether these memories can be accessed.

The results of the new study were illuminating on both counts. In intestinal cells from adult mice, Shivdasani and his colleagues found a nearly complete archive of enhancers that were active in the formative stages of intestinal development. Moreover, they found that in the absence of a protein called Polycomb Repressive Complex 2 (PRC2), most of these mothballed enhancers returned to activity within two weeks' time. (PRC2 is one of the major proteins used by cells to turn off specific genes.)

"We showed that adult cells not only retain a memory of the embryonic and fetal period but also that, under certain circumstances, this memory can be recovered," Shivdasani remarks. "The archive is stored safely and can be recalled with remarkable specificity and accuracy."

At this point, researchers can only speculate about why adult cells preserve these molecular memories. One possibility is that they're simply relics of an earlier stage of cells' lineage - fossils of their course of development. Another is that cells may need to summon these memories - to bring them to life, in effect - in order to generate fresh tissue to repair damage. "If the body needs to regenerate tissue that is damaged, it may be necessary for cells within that tissue to replay what happened in the embryo," Shivdasani states.

The findings may open a new chapter in regenerative medicine, as scientists explore whether cell memory can be harnessed to generate replacement tissue for organs that are damaged or diseased, the study authors say. Since such tissue would be derived from patients' own cells, there would be no risk of rejection by the immune system.

The discovery may also hold promise for cancer treatment. It's thought that one of the ways cancer cells gain the ability to leave the original tumor and metastasize is by switching on genes that were active during fetal development but later became dormant. Knowing that cells keep a record of their once-active enhancers may suggest new targets for therapies aimed at halting or preventing metastasis in patients.
The lead author of the study is Unmesh Jadhav, PhD, of Dana-Farber, Brigham and Women's, and Harvard Medical School. Co-authors are Huafeng Xie, PhD, of Dana-Farber and Harvard Medical School; Nicholas K. O'Neill, Zachary Herbert, MS, and Shariq Madha, of Dana-Farber; Alessia Cavazza, PhD, and Kushal K. Banerjee, of Dana-Farber, Brigham and Women's, and Harvard Medical School; Veronica Saenz-Vash and Huili Zhai, PhD, of Novartis Institutes for Biomedical Research; and Stuart Orkin, MD, of Dana-Farber, the Howard Hughes Medical Institute, Harvard Medical School, and the Harvard Stem Cell Institute.

The study was supported by the National Institutes of Health (grants R01DK081113, R01DK082889, U01DK103152, F32DK103453, K01DK113067, and P50CA127003); the Dana-Farber Cancer Institute-Novartis Drug Discovery Program; a fellowship from the Italian American Cancer Foundation; and gifts from the Lind family.

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute is one of the world's leading centers of cancer research and treatment. It is the only center ranked in the top 4 of U.S. News and World Report's Best Hospitals for both adult and pediatric cancer care.

Dana-Farber's mission is to reduce the burden of cancer through scientific inquiry, clinical care, education, community engagement, and advocacy. We provide the latest in cancer for adults through Dana-Farber/Brigham and Women's Cancer Care and for children through Dana-Farber/Boston Children's Cancer and Blood Disorders Center.

Dana-Farber is dedicated to a unique and equal balance between cancer research and care, translating the results of discovery into new treatments for patients locally and around the world.

Dana-Farber Cancer Institute

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...