Nav: Home

Plant scraps are the key ingredient in cheap, sustainable jet fuel

March 21, 2019

Scientists in China have developed a process for converting plant waste from agriculture and timber harvesting into high-density aviation fuel. Their research, published March 21 in the journal Joule, may help reduce CO2 emissions from airplanes and rockets.

Cellulose, the main component in the biofuel, is a cheap, renewable, and highly abundant polymer that forms the cell walls of plants. While chain alkanes (such as branched octane, dodecane, and hexadecane) have previously been derived from cellulose for use in jet fuel, the researchers believe this is the first study to produce more complex polycycloalkane compounds that can be used as high-density aviation fuel.

Ning Li, a research scientist at the Dalian Institute of Chemical Physics and an author of the study, believes this new biofuel could be instrumental in helping aviation "go green."

"Our biofuel is important for mitigating CO2 emissions because it is derived from biomass and it has higher density (or volumetric heat values) compared with conventional aviation fuels," says Li. "As we know, the utilization of high-density aviation fuel can significantly increase the range and payload of aircraft without changing the volume of oil in the tank."

To produce this biofuel, Li and his team found that cellulose can be selectively converted to 2,5-hexanedione using the chemical reaction hydrogenolysis. They then developed a method of separating the compound 2,5-hexanedione by converting the 5-methylfurfural in hydrogenolysis product to 2,5-hexanedione, while keeping 2,5-hexanedione in the product unchanged. This resulted in a 71% isolated carbon yield--a 5% increase from the product yield in their initial work. Finally, they reacted hydrogen with the 2,5-hexanedione from wheatgrass cellulose to obtain the final product: a mixture of C12 and C18 polycycloalkanes with a low freezing point and a density about 10% higher than that of conventional jet fuels. Much of the biofuel's magic lies in this high density--it can be used as either a wholesale replacement fuel or as an additive to improve the efficiency of other jet fuels.

"The aircraft using this fuel can fly farther and carry more than those using conventional jet fuel, which can decrease the flight number and decrease the CO2 emissions during the taking off (or launching) and landing," says Li.

Although the researchers produced the biofuel at a laboratory scale in this study, Li and his team believe the process' cheap, abundant cellulose feedstock, fewer production steps, and lower energy cost and consumption mean it will soon be ready for commercial use. They also predict it will yield higher profits than conventional aviation fuel production because it requires lower costs to produce a higher-density fuel. The biggest issue holding the process back is its use of dichloromethane to break down cellulose into 2,5-hexanedione; the compound is traditionally used as a solvent in paint removers and is considered an environmental and health hazard.

"In the future, we will go on to explore the environmentally friendly and renewable organic solvent that can replace the dichloromethane used in the hydrogenolysis of cellulose to 2,5-hexanedione," says Li. "At the same time, we will study the application of 2,5-hexanedione in the synthesis of other fuels and value-added chemicals."
This work was supported by the National Natural Science Foundation of China, DNL Cooperation Fund, CAS, the Strategic Priority Research Program of the Chinese Academy of Sciences, the National Key Projects for Fundamental Research and Development of China, the Postdoctoral Science Foundation of China, and an iChEM postdoctoral fellowship.

Joule, Liu et al.: "Integrated Conversion of Cellulose to High-Density Aviation Fuel"

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Biofuel Articles:

Next step on the path towards an efficient biofuel cell
Fuel cells that work with the enzyme hydrogenase are, in principle, just as efficient as those that contain the expensive precious metal platinum as a catalyst.
A biofuel for automated heat generation
Biomass is an obvious resource for energy generation with a lower environmental impact.
A protective shield for sensitive enzymes in biofuel cells
Researchers have developed a new mechanism to protect enzymes from oxygen as biocatalysts in fuel cells.
Scientists identify enzyme that could help accelerate biofuel production
Researchers at Tokyo Institute of Technology have honed in on an enzyme belonging to the glycerol-3-phosphate acyltransferase (GPAT) family as a promising target for increasing biofuel production from the red alga Cyanidioschyzon merolae.
New biofuel technology significantly cuts production time
New research from a professor of engineering at UBC's Okanagan Campus might hold the key to biofuels that are cheaper, safer and much faster to produce.
More Biofuel News and Biofuel Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...