Nav: Home

Physicists reveal why matter dominates universe

March 21, 2019

SYRACUSE, N.Y. - Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

Distinguished Professor Sheldon Stone says the findings are a first, although matter-antimatter asymmetry has been observed before in particles with strange quarks or beauty quarks.

He and members of the College's High-Energy Physics (HEP) research group have measured, for the first time and with 99.999-percent certainty, a difference in the way D0mesons and anti-D0 mesons transform into more stable byproducts.

Mesons are subatomic particles composed of one quark and one antiquark, bound together by strong interactions.

"There have been many attempts to measure matter-antimatter asymmetry, but, until now, no one has succeeded," says Stone, who collaborates on the Large Hadron Collider beauty (LHCb) experiment at the CERN laboratory in Geneva, Switzerland. "It's a milestone in antimatter research."

The findings may also indicate new physics beyond the Standard Model, which describes how fundamental particles interact with one another. "Till then, we need to await theoretical attempts to explain the observation in less esoteric means," he adds.

Every particle of matter has a corresponding antiparticle, identical in every way, but with an opposite charge. Precision studies of hydrogen and antihydrogen atoms, for example, reveal similarities to beyond the billionth decimal place.

When matter and antimatter particles come into contact, they annihilate each other in a burst of energy--similar to what happened in the Big Bang, some 14 billion years ago.

"That's why there is so little naturally occurring antimatter in the Universe around us," says Stone, a Fellow of the American Physical Society, which has awarded him this year's W.K.H. Panofsky Prize in Experimental Particle Physics.

The question on Stone's mind involves the equal-but-opposite nature of matter and antimatter. "If the same amount of matter and antimatter exploded into existence at the birth of the Universe, there should have been nothing left behind but pure energy. Obviously, that didn't happen," he says in a whiff of understatement.

Thus, Stone and his LHCb colleagues have been searching for subtle differences in matter and antimatter to understand why matter is so prevalent.

The answer may lie at CERN, where scientists create antimatter by smashing protons together in the Large Hadron Collider (LHC), the world's biggest, most powerful particular accelerator. The more energy the LHC produces, the more massive are the particles--and antiparticles--formed during collision.

It is in the debris of these collisions that scientists such as Ivan Polyakov, a postdoc in Syracuse's HEP group, hunt for particle ingredients.

"We don't see antimatter in our world, so we have to artificially produce it," he says. "The data from these collisions enables us to map the decay and transformation of unstable particles into more stable byproducts."

HEP is renowned for its pioneering research into quarks--elementary particles that are the building blocks of matter. There are six types, or flavors, of quarks, but scientists usually talk about them in pairs: up/down, charm/strange and top/bottom. Each pair has a corresponding mass and fractional electronic charge.

In addition to the beauty quark (the "b" in "LHCb"), HEP is interested in the charmed quark. Despite its relatively high mass, a charmed quark lives a fleeting existence before decaying into something more stable.

Recently, HEP studied two versions of the same particle. One version contained a charmed quark and an antimatter version of an up quark, called the anti-up quark. The other version had an anti-charm quark and an up quark.

Using LHC data, they identified both versions of the particle, well into the tens of millions, and counted the number of times each particle decayed into new byproducts.

"The ratio of the two possible outcomes should have been identical for both sets of particles, but we found that the ratios differed by about a tenth of a percent," Stone says. "This proves that charmed matter and antimatter particles are not totally interchangeable."

Adds Polyakov, "Particles might look the same on the outside, but they behave differently on the inside. That is the puzzle of antimatter."

The idea that matter and antimatter behaves differently is not new. Previous studies of particles with strange quarks and bottom quarks have confirmed as such.

What makes this study unique, Stone concludes, is that it is the first time anyone has witnessed particles with charmed quarks being asymmetrical: "It's one for the history books."
-end-
HEP's work is supported by the National Science Foundation.

Syracuse University

Related Antimatter Articles:

Scientists make step towards understanding the universe
Physicists from the University of Sheffield have taken a step towards understanding why the universe is made of mostly matter and not antimatter, by studying the difference between the two.
Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.
T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.
Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.
APS tip sheet: Origins of matter and antimatter
Study suggests an 'axiogenesis' mechanism for the explanation of the matter to antimatter ratio in the Universe
The axion solves three mysteries of the universe
A hypothetical particle called the axion could solve one of physics' great mysteries: the excess of matter over antimatter, or why we're here at all.
NASA's Fermi Mission links nearby pulsar's gamma-ray 'halo' to antimatter puzzle
NASA's Fermi Gamma-ray Space Telescope has discovered a faint but sprawling glow of high-energy light around a nearby pulsar.
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
First demonstration of antimatter wave interferometry
An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties.
Researchers discover CP violation in charm meson decays
Researchers from the Higher School of Economics and Yandex, as part of the LHCb collaboration at CERN, have been the first to discover CP violation in charm meson decays.
More Antimatter News and Antimatter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.