Nav: Home

How 'sleeper cell' cancer stem cells are maintained in chronic myelogenous leukemia

March 21, 2019

BIRMINGHAM, Ala. - Most patients with chronic myelogenous leukemia can be treated with tyrosine kinase inhibitors. These drugs are highly effective and lead to deep remission and prolonged survival. Yet quiescent leukemic stem cells persist in these patients, and they therefore must continue inhibitor treatment to maintain remission.

These 'sleeper cell,' quiescent leukemic stem cells are maintained in microenvironments in the bone marrow. The bone marrow niches are specific anatomic locations that are known to maintain normal hematopoietic stem cells, the precursors of all blood cells. However, the maintenance of leukemic stem cells in chronic myelogenous leukemia is poorly understood.

In a study published in Cell Stem Cell, Ravi Bhatia, M.D., and colleagues at the University of Alabama at Birmingham, University of Zurich and Osaka University describe how niche-specific expression of a particular chemokine by a particular type of bone marrow cell controls quiescence of these treatment-resistant leukemic stem cells. The chemokine is CXCL12, and the particular bone marrow cells expressing it are mesenchymal stromal cells. Mesenchymal stromal cells are already known to help support normal stem cells.

"The persistence of dormant, primitive leukemic stem cells in patients receiving tyrosine kinase inhibitor treatment is a major barrier to a cure in chronic myelogenous leukemia," Bhatia said. "This work identifies the specific mesenchymal stromal cell niche cells that are responsible for maintaining leukemic stem cells in a quiescent and treatment-resistant state, and indicates that targeting these niche interactions can activate leukemia stem cells, make them sensitive to treatment and enhance their elimination."

At UAB, Bhatia is a professor of medicine, director of the Division of Hematology and Oncology, and deputy director of the O'Neal Comprehensive Cancer Center at UAB.

CXCL12 is expressed in bone marrow niches and controls hematopoietic stem cell maintenance. There are four types of cells in bone marrow known to abundantly produce CXCL12. In mouse experiments, Bhatia and colleagues were able to produce targeted deletions of the gene for CXCL12 in each cell type, and then ask how each deletion affected leukemic stem cell regulation.

They found that deleting CXCL12 from mesenchymal stromal cells, but not from the other three CXCL12-expressing bone marrow microenvironment cell types, enhanced leukemia development and reduced survival of the mice. These results were related to increased cell cycling and expansion of the chronic myelogenous leukemia stem cells. However, the cycling leukemia stem cells became sensitive to tyrosine kinase treatment, resulting in their increased elimination.

Bone marrow imaging studies revealed that stromal cells reorganized to co-localize with leukemia stem cells in discrete regions in the bone marrow. These regions of co-localized mesenchymal stromal cells and leukemia stem cells were lost upon CXCL12 deletion, further supporting the importance of CXCL12 expression in maintaining leukemia stem cell niches.

"These results therefore reveal that CXCL12-expressing mesenchymal stromal cells function as specific regulatory niches that maintain quiescent, treatment-resistant leukemic stem cells in the bone marrow," Bhatia said.

In contrast to mesenchymal stromal cells, loss of CXCL12 expression in endothelial cells of the bone marrow microenvironment resulted in reduction of chronic myelogenous leukemic stem cell numbers, and it extended the survival rates for the mice. This suggests that CXCL12-expressing endothelial cell niches help to maintain leukemia stem cells.

Thus, niches with mesenchymal stromal cells and endothelial cells that express CXCL12 have markedly different regulatory effects on the leukemic stem cells.
-end-
Co-authors with Ravi Bhatia of the study, "Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells," are Puneet Agarwal, Hui Li, Andrew J. Paterson and Jianbo He, Division of Hematology and Oncology, UAB Department of Medicine; Stephan Isringhausen, Álvaro Gomariz and César Nombela-Arrieta, Department of Hematology and Oncology, University Hospital and University of Zurich, Switzerland; and Takashi Nagasawa, Graduate School of Frontier Biosciences, Osaka University, Japan.

Support came from National Institutes of Health grants CA172447 and CA033572.

University of Alabama at Birmingham

Related Bone Marrow Articles:

Researchers reveal developmental mechanisms behind rare bone marrow disorder
Myelodysplastic syndrome is an umbrella term used to describe disorders characterized by the bone marrow's inability to produce normal blood cells.
Researchers propose noninvasive method to detect bone marrow cancer
For the first time, researchers have shown that using magnetic resonance imaging can effectively identify bone marrow cancer (myelofibrosis) in an experimental model.
Bone marrow inflammation predicts leukemia risk
Cancer is generally thought to arise from genetic damage within individual cells, but recent evidence has suggested that abnormal signaling in the surrounding tissue also plays an important role.
New approach could make bone marrow transplants safer
Bone marrow transplantation is the only curative therapy for the millions of people living with blood disorders like sickle cell anemia, thalassemia, and AIDS.
Bone marrow lesions can help predict rapidly progressing joint disease
A new study from the Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, shows lesions, which can best be seen on MRI scans, could help identify individuals who are more likely to suffer from more rapidly progressing osteoarthritis.
Fat cells originating from bone marrow found in humans
Researchers at the University of Colorado Anschutz Medical Campus have found that fat cells produced by stem cells from the bone marrow may be linked to chronic illnesses like diabetes, cardiovascular disease, kidney disease and some cancers.
Zebrafish reveal drugs that may improve bone marrow transplant
Using large-scale zebrafish drug-screening models, researchers at Boston Children's Hospital have identified a potent group of chemicals that helps bone marrow transplants engraft or 'take.'
The secrets of bone marrow: What leads to healthy blood cell production?
The Medical College of Wisconsin has received a five-year, $635,000 grant from the National Institutes of Health's National Heart, Lung and Blood Institute to identify new potential treatments for diseases that inhibit the growth of blood cells and diseases in which the blood cells develop abnormally.
Clinical trial uses patients' own cells for treatment after bone marrow transplant
A clinical trial using personalized cellular therapy has begun enrolling children and adults suffering from graft-versus-host-disease, a life-threatening complication of bone marrow transplantation in which donor immune lymphocytes attack the organs of the bone marrow transplant recipient.
3-D engineered bone marrow makes functioning platelets
An international research team has reported development of the first three-dimensional tissue system that reproduces the complex structure and physiology of human bone marrow and successfully generates functional human platelets.

Related Bone Marrow Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...