Study gives new perspective on production of blood cells and immune cells

March 21, 2019

A healthy adult makes about 2 million blood cells every second, and 99 percent of them are oxygen-carrying red blood cells. The other one percent are platelets and the various white blood cells of the immune system. How all the different kinds of mature blood cells are derived from the same "hematopoietic" stem cells in the bone marrow has been the subject of intense research, but most studies have focused on the one percent, the immune cells.

"It's a bit odd, but because red blood cells are enucleated and therefore hard to track by genetic markers, their production has been more or less ignored by the vast number of studies in the past couple of decades," said Camilla Forsberg, professor of biomolecular engineering in the Baskin School of Engineering at UC Santa Cruz.

In a new study, published March 21 in Stem Cell Reports, Forsberg's lab overcame technical obstacles to provide a thorough accounting of blood cell production from hematopoietic stem cells. Their findings are important for understanding disorders such as anemia, diseases of the immune system, and blood cancers such as leukemias and lymphomas.

"We're trying to understand the balance of production of blood cells and immune cells, which goes wrong in many kinds of disorders," Forsberg said.

The process by which hematopoietic stem cells give rise to mature blood cells involves multiple populations of progenitor cells that become progressively more committed to a specific "fate" as they develop into fully mature cells. A major fork in the road is between "lymphoid progenitors," which give rise to white blood cells called lymphocytes, and "myeloid progenitors," which give rise to other kinds of white blood cells, as well as red blood cells and platelets. The majority of cells in the bone marrow are in the myeloid lineage.

A key finding of the new study is that all progenitor cells with myeloid potential produce far more red blood cells than any other cell type. This was surprising because many previous studies in which progenitor cells were grown in cell cultures ("in vitro") found they had limited capacity to produce red blood cells and platelets. Forsberg said those results now appear to be an artifact of the culture conditions.

"It's been hard to make sense of a lot of those experiments, because we know our bodies need to make a lot of red blood cells and platelets," she said. "Our results show that these progenitor cells retain a lot of red blood cell potential. In fact, we propose that red blood cell production is the default pathway."

In experiments led by first author Scott Boyer, a graduate student in Forsberg's lab, researchers transplanted different progenitor cell populations into mice and tracked the production of red blood cells as well as platelets (the second largest component of blood) and immune cells. Boyer was also able to transplant single progenitor cells and then identify the blood and immune cells it produced.

By quantifying the numbers of mature blood cells produced from transplanted progenitors, the researchers were able to show that red blood cells were by far the most abundant cell type produced by every type of progenitor cell, with the exception of lymphoid progenitors. Their findings led to the development of a model of hematopoietic differentiation that focuses on red blood cells as the default pathway for all myeloid progenitors.
-end-
In addition to Forsberg and Boyer, the coauthors of the paper include Smrithi Rajendiran, Anna Beaudin, Stephanie Smith-Berdan, Praveen Muthuswamy, Jessica Perez-Cunningham, Eric Martin, Christa Cheung, Herman Tsang, and Mark Landon, all at the UC Santa Cruz Institute for the Biology of Stem Cells. This work was supported by the National Institutes of Health and the California Institute for Regenerative Medicine.

University of California - Santa Cruz

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.