Nav: Home

Study shows first evidence bacterial-induced apoptosis in algae

March 21, 2019

A new study by UAlberta biologists shows the first evidence of apoptosis, or programmed cell death in algae. The outcomes have broad-reaching implications, from the development of targeted antibiotics to the production of biofuels in industry.

"It sounds odd, but programmed cell death is important to all large organisms. For any cells to differentiate, they have to be able to kill cells. For example, if you injure yourself, your scab is formed with these killed-off cells," explained Rebecca Case, associate professor in UAlberta's Department of Biological Sciences. "Here at the single-cell level, we've found that small molecules are passed from bacteria into the host algae. By doing that, the bacteria are able to tell the algae to kill itself."

Until now, programmed cell death, also known as apoptosis, was thought to only occur in large, multicellular organisms such as animals and humans. This research shows that bacteria that live on single-cellular algae can cause programmed cell death. "It is the first documentation of true apoptosis via bacterial pathogens in microorganisms like algae," said Case, who conducted the work with PhD graduate Anna Bramucci.

One potential application of this research is in drug discovery and development. Unlike traditional antibiotics, which kill all bacteria, this research can be applied to develop drugs with a more fine-tuned approach, turning individual bacteria or cells on and off. Previously Cas and colleagues have used this approach to find antibiotics that are effective at concentrations up to 1,000 times lower than traditional antibiotics.

"In interactions like these that occur in close proximity you can find molecules that are effective in very small concentrations," said Case. "Going forward, that's what we want--really potent molecules."

Another area of interest is in natural fuels derived from living matter, called biofuels. "Algae can also be used to create lipids for biofuels," explained Case. "If we can better understand their life cycles, we can find ways to keep them alive for longer, to produce more fuel for industry."
-end-
The paper, "Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi," was published in Scientific Reports (doi: 10.1038/s41598-018-36847-6).

University of Alberta

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...