Nav: Home

Kicking neural network automation into high gear

March 21, 2019

A new area in artificial intelligence involves using algorithms to automatically design machine-learning systems known as neural networks, which are more accurate and efficient than those developed by human engineers. But this so-called neural architecture search (NAS) technique is computationally expensive.

One of the state-of-the-art NAS algorithms recently developed by Google took 48,000 hours of work by a squad of graphical processing units (GPUs) to produce a single convolutional neural network, used for image classification and identification tasks. Google has the wherewithal to run hundreds of GPUs and other specialized circuits in parallel, but that's out of reach for many others.

In a paper being presented at the International Conference on Learning Representations in May, MIT researchers describe an NAS algorithm that can directly learn specialized convolutional neural networks (CNNs) for target hardware platforms -- when run on a massive image dataset -- in only 200 GPU hours, which could enable far broader use of these types of algorithms.

Resource-strapped researchers and companies could benefit from the time- and cost-saving algorithm, the researchers say. The broad goal is "to democratize AI," says co-author Song Han, an assistant professor of electrical engineering and computer science and a researcher in the Microsystems Technology Laboratories at MIT. "We want to enable both AI experts and nonexperts to efficiently design neural network architectures with a push-button solution that runs fast on a specific hardware."

Han adds that such NAS algorithms will never replace human engineers. "The aim is to offload the repetitive and tedious work that comes with designing and refining neural network architectures," says Han, who is joined on the paper by two researchers in his group, Han Cai and Ligeng Zhu.

"Path-level" binarization and pruning

In their work, the researchers developed ways to delete unnecessary neural network design components, to cut computing times and use only a fraction of hardware memory to run a NAS algorithm. An additional innovation ensures each outputted CNN runs more efficiently on specific hardware platforms -- CPUs, GPUs, and mobile devices -- than those designed by traditional approaches. In tests, the researchers' CNNs were 1.8 times faster measured on a mobile phone than traditional gold-standard models with similar accuracy.

A CNN's architecture consists of layers of computation with adjustable parameters, called "filters," and the possible connections between those filters. Filters process image pixels in grids of squares -- such as 3x3, 5x5, or 7x7 -- with each filter covering one square. The filters essentially move across the image and combine all the colors of their covered grid of pixels into a single pixel. Different layers may have different-sized filters, and connect to share data in different ways. The output is a condensed image -- from the combined information from all the filters -- that can be more easily analyzed by a computer.

Because the number of possible architectures to choose from -- called the "search space" -- is so large, applying NAS to create a neural network on massive image datasets is computationally prohibitive. Engineers typically run NAS on smaller proxy datasets and transfer their learned CNN architectures to the target task. This generalization method reduces the model's accuracy, however. Moreover, the same outputted architecture also is applied to all hardware platforms, which leads to efficiency issues.

The researchers trained and tested their new NAS algorithm on an image classification task in the ImageNet dataset, which contains millions of images in a thousand classes. They first created a search space that contains all possible candidate CNN "paths" -- meaning how the layers and filters connect to process the data. This gives the NAS algorithm free reign to find an optimal architecture.

This would typically mean all possible paths must be stored in memory, which would exceed GPU memory limits. To address this, the researchers leverage a technique called "path-level binarization," which stores only one sampled path at a time and saves an order of magnitude in memory consumption. They combine this binarization with "path-level pruning," a technique that traditionally learns which "neurons" in a neural network can be deleted without affecting the output. Instead of discarding neurons, however, the researchers' NAS algorithm prunes entire paths, which completely changes the neural network's architecture.

In training, all paths are initially given the same probability for selection. The algorithm then traces the paths -- storing only one at a time -- to note the accuracy and loss (a numerical penalty assigned for incorrect predictions) of their outputs. It then adjusts the probabilities of the paths to optimize both accuracy and efficiency. In the end, the algorithm prunes away all the low-probability paths and keeps only the path with the highest probability -- which is the final CNN architecture.


Another key innovation was making the NAS algorithm "hardware aware," Han says, meaning it uses the latency on each hardware platform as a feedback signal to optimize the architecture. To measure this latency on mobile devices, for instance, big companies such as Google will employ a "farm" of mobile devices, which is very expensive. The researchers instead built a model that predicts the latency using only a single mobile phone.

For each chosen layer of the network, the algorithm samples the architecture on that latency-prediction model. It then uses that information to design an architecture that runs as quickly as possible, while achieving high accuracy. In experiments, the researchers' CNN ran nearly twice as fast as a gold-standard model on mobile devices.

One interesting result, Han says, was that their NAS algorithm designed CNN architectures that were long dismissed as being too inefficient -- but, in the researchers' tests, they were actually optimized for certain hardware. For instance, engineers have essentially stopped using 7x7 filters, because they're computationally more expensive than multiple, smaller filters. Yet, the researchers' NAS algorithm found architectures with some layers of 7x7 filters ran optimally on GPUs. That's because GPUs have high parallelization -- meaning they compute many calculations simultaneously -- so can process a single large filter at once more efficiently than processing multiple small filters one at a time.

"This goes against previous human thinking," Han says. "The larger the search space, the more unknown things you can find. You don't know if something will be better than the past human experience. Let the AI figure it out."
The work was supported, in part, by the MIT Quest for Intelligence, the MIT-IBM Watson AI lab, and SenseTime.

Related links

PAPER: ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware"

ARCHIVE: Putting neural networks under the microscope

ARCHIVE: More efficient security for cloud-based machine learning

ARCHIVE: Neural networks everywhere

Massachusetts Institute of Technology

Related Algorithm Articles:

Scientists use algorithm to peer through opaque brains
A new algorithm helps scientists record the activity of individual neurons within a volume of brain tissue.
Algorithm generates origami folding patterns for any shape
A new algorithm generates practical paper-folding patterns to produce any 3-D structure.
New algorithm tracks neurons in bendy brain of freely crawling worm
Scientists at Princeton University have developed a new algorithm to track neurons in the brain of the worm Caenorhabditis elegans while it crawls.
Does my algorithm work? There's no shortcut for community detection
Community detection is an important tool for scientists studying networks, but a new paper published in Science Advances calls into question the common practice of using metadata for ground truth validation.
'Cyclops' algorithm spots daily rhythms in cells
Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness.
An algorithm that knows when you'll get bored with your favorite mobile game
Researchers from the Tokyo-based company Silicon Studio, led by Spanish data scientist África Periáñez, have developed a new algorithm that predicts when a user will leave a mobile game.
Algorithm identified Trump as 'not-married'
Scientists from Russia and Singapore created an algorithm that predicts user marital status with 86% precision using data from three social networks instead of one.
A novel positioning algorithm based on self-adaptive algorithm
Much attention has been paid to the Taylor series expansion (TSE) method these years, which has been extensively used for solving nonlinear equations for its good robustness and accuracy of positioning.
Algorithm can create a bridge between Clinton and Trump supporters
The article that received the best student-paper award in the Tenth International Conference on Web Search and Data Mining (WSDM 2017) builds algorithmic techniques to mitigate the rising polarization by connecting people with opposing views -- and evaluates them on Twitter.
Deep learning algorithm does as well as dermatologists in identifying skin cancer
In hopes of creating better access to medical care, Stanford researchers have trained an algorithm to diagnose skin cancer.

Related Algorithm Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...