Hopkins scientists discover how Huntington's kills cells: block death in cultures

March 22, 2001

Scientists discovered the gene for Huntington's disease in 1993, but in all that time, they couldn't explain how the gene leads to the death of a small patch of nerve cells in a key part of the brain.

Now studies from two laboratories at Johns Hopkins suggest precisely what goes awry in the brain cells marked for destruction: a mutant protein "hijacks" a key molecule in a cell's survival system. Using what they've learned, the researchers have also been able to fully reverse impending cell death in laboratory cultures of human cells containing the mutant HD gene.

An account of the study appears this week in the journal Science.

"Obviously, our goal has been to understand HD's mechanism so we can interfere with it early on with drugs," says lead researcher Christopher A. Ross, M.D., Ph.D. "But this is also a broader advance," says neuroscientist Ted M. Dawson, M.D., Ph.D. "It shows us a new way in which genetic errors could cause disease."

Huntington's disease is a fatal hereditary disorder, marked by death of nerve cells chiefly in the corpus striatum, a part of the brain that helps control movement and thought. Patients need inherit only a single mutant gene to get HD. Symptoms typically begin in middle age, usually as uncontrollable movement followed by progressive dementia and death.

"We've long known that the abnormal gene produces a flawed form of a protein called huntingtin," says Ross. Like a train with too many dining cars, the irregular molecule has too many repeats of glutamine, one of its amino acid subunits. Brain cells of patients with HD show characteristic clumping of the flawed huntingtin.

But the clumped molecule itself apparently isn't harmful. "The real problem is that the abnormally shaped protein attracts and becomes entangled with a smaller, critical protein in the cell nucleus," says doctoral student Frederick C. Nucifora, Jr. The smaller protein-a regulatory molecule called CBP-gets "pulled away" from its place of action alongside DNA and then becomes entangled and useless, says Ross.

"Without CBP," he continues, "a pathway crucial for cell survival never gets turned on."

To prove CPB gets hijacked, the researchers attached different colored fluorescent markers to DNA, huntingtin and CBP and watched what happened inside cells to which they'd added mutant HD genes. They could see the CBP get sequestered out of the nucleus. They also showed this "hijacking" in live mice carrying the human HD gene and in postmortem brains from human HD patients.

Assays of gene activity in the nerve cells showed that, under these conditions, CBP's normal gene-regulating activity-turning on genes for survival pathways-wasn't happening.

But most striking, the researchers say, was being able to reverse the process in the test tube, turning around the cells' slide into death.

In earlier studies, when researchers in Ross's lab inserted mutant HD genes into nerve cells in culture, the cells died in a way identical to brain cells of HD patients. But this time, when the scientists introduced mutant HD genes into cultured cells, they also added a bogus version of CBP with the molecular areas normally attracted to mutant huntingtin snipped out.

Now, unable to be hijacked, the engineered CBP could perform its survival task. "Instead of degenerating," Ross says, "cells in these cultures remained healthy. We were able to rescue them completely."

"We haven't yet demonstrated the turnaround in a live mouse model," says Ross. That's a critical step, both in proving the principle and taking a future road to human therapy. The researchers anticipate technical details will complicate this work "Our research so far, however, offers a needed target for developing and testing new drugs."

The results of the study also apply to a growing family of neurological genetic diseases which, the researchers say, operate on a similar principle. They include the spinocerebellar ataxias, a set of rare but debilitating diseases of movement and gait.

The research was funded by grants from the Huntington's Disease Society of America, the Hereditary Disease Foundation and the National Institute of Neurological Disorders and Stroke.
-end-


Check this Web site to see photographs from the study:
http://hopkins.med.jhu.edu/press/2001/MARCH/010322A.HTM

Other related Web sites:

Dr. Ross's research Web site:
http://www.med.jhu.edu/neurosci/web_text_neurosci-PRIMARY-ROSS.html
This is Dr. Dawson's Web site:
http://www.med.jhu.edu/neurosci/web_text_neurosci-PRIMARY-T-DAWSON.html
For links to the Huntington's Disease Society of America: http://www.hdsa.org/
Another lay-oriented site: http://www.interlog.com/~rlaycock/what.html >

Johns Hopkins Medicine

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.