Nav: Home

Ultrafast measurements explain quantum dot voltage drop

March 22, 2017

LOS ALAMOS, N.M., March 22, 2017--Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes.

"Our latest ultrafast electro-optical spectroscopy studies provide unprecedented insights into the photophysics of quantum dots," said lead researcher Victor Klimov, a physicist specializing in semiconductor nanocrystals at Los Alamos National Laboratory, "and this new information helps perfect the materials' properties for applications in practical photoconversion devices. Our new experimental technique allows us to follow a chain of events launched by femtosecond laser pulses and pin down processes responsible for efficiency losses during transformation of incident light into electrical current."

Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of "solar fuels"). The appeal of quantum dots comes from the unmatched tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots.

At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.

See a video on quantum dots here:

The interest in quantum dots as solar-cell materials has been motivated by their tunable optical spectra as well as interesting new physics such as high-efficiency carrier multiplication, that is, generation of multiple electron-hole pairs by single photons. This effect, discovered by Los Alamos researchers in 2004, resulted in the surge of activities in the area of quantum dot solar cells that quickly pushed the efficiencies of practical devices to more than 10 percent.

Further progress in this area has been by hindered by the challenge of understanding the mechanisms of electrical conductance in quantum dot solids and the processes that limit the charge transport distance. One specific and persistent challenge of great importance from the standpoint of photovoltaic (PV) applications, Klimov said, is understanding the reasons underlying a considerable loss in photovoltage compared to predicted theoretical limits--a problem with quantum dot solar cells known as a "photovoltage deficit." Los Alamos researchers at the Center for Advanced Solar Photophysics (CASP) helps answer some of the above questions.

By applying a combination of ultrafast optical and electrical techniques, the Los Alamos scientists have been able to resolve step-by-step a sequence of events involved in photoconversion in quantum dot films from generation of an exciton to electron-hole separation, dot-to-dot charge migration and finally recombination.

The high temporal resolution of these measurements (better than one billionth of a second) enabled the team to reveal the cause of a large drop of the electron energy, which results from very fast electron trapping by defect-related states. In the case of practical devices, this process would result in reduced photovoltage. The newly conducted studies establish the exact time scale of this problematic trapping process and suggest that a moderate (less than ten-fold) improvement in the electron mobility should allow for collecting photogenerated charge carriers prior to their relaxation into lower-energy states. This would produce a dramatic boost in the photovoltage and therefore increase the overall device efficiency.

Another interesting effect revealed by these studies is the influence of electron and hole "spins" on photoconductance. Usually spin properties of particles (they can be thought of as the rate and direction of particle rotation around its axis) are invoked in the case of interactions with a magnetic field. However, previously it was found that even a weak interaction between spins of an electron and a hole (so-called "spin-exchange" interaction) has a dramatic effect on light emission from the quantum dots.

The present measurements reveal that these interactions also affect the process of electron-hole separation between adjacent dots in quantum-dot solids. Specifically these studies suggest that future efforts on high-sensitivity quantum-dot photodetectors should take into consideration the effect of exchange blockade, which otherwise might inhibit low-temperature photoconductance.

Quantum dot materials have been at the heart of research at the Los Alamos Center for Advanced Solar Photophysics, which has investigated their application to solar-energy technologies such as luminescent sunlight collectors for solar windows and low-cost PV cells processed from quantum dot solutions.
The paper, in this week's Nature Physics Journal: "Electron-hole exchange blockade and memory-less recombination in photoexcited films of colloidal quantum dots," Andrew F. Fidler, Jianbo Gao & Victor I. Klimov

Funding: This work was funded by the Department of Energy's Office of Science through a grant to the Center for Advance Solar Photophysics (CASP), a DOE Energy Frontier Research Center.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction and solving problems related to energy, environment, infrastructure, health and global security concerns.

DOE/Los Alamos National Laboratory

Related Solar Cells Articles:

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at