After the epigenome: The epitranscriptome

March 22, 2017

Our genome is made up of 6,000 million pieces of DNA that combine four "flavors": A, C, G and T (Adenine, Cytosine, Guanine and Thymine). It is our Alphabet. But to this base we must add some regulation, just like the spelling and grammar of that alphabet: this is what we call Epigenetics.

In epigenetics, there there are "accents", called DNA methylation, which means having a C or a methyl-C. The first one usually means that a gene is expressed and active, while the second one implies that a gene is silent and inactive. Our DNA "speaks" when it produces another molecule called RNA (Ribonucleic Acid). Until very recently, it was believed that this molecule was only a poorly regulated intermediate capable of producing proteins (such as insulin, hemoglobin and others) under DNA's orders.

Today, an article published in Cancer Discovery by Manel Esteller, Director of the Epigenetics and Cancer Biology Program of Bellvitge Biomedical Research Institute (IDIBELL), ICREA Researcher and Professor of Genetics at the University of Barcelona, explains that this RNA also has its own spelling and grammar, just like DNA. These "epigenetics of RNA" are called epitranscriptome.

"It is well-known that sometimes DNA produces a RNA string but then this RNA does not originate the protein. Because in these cases the alteration is neither in the genome nor the proteome, we thought it should be in the transcriptome, that is, in the RNA molecule", Dr. Esteller explains."In recent years, we discovered that our RNA is highly regulated and if only two or three modifications at the DNA level can control it, there may be hundreds of small changes in RNA that control its stability, its intracellular localization or its maturation in living beings".

In human cells, this field did not start to be studied in depth in the last five years. "For example, we now know that RNA can be methylated just like DNA and in a highly specific way", says Dr. Manel Esteller, "and even more recently we observed that these epigenetic modifications of RNA may be key in the regulation of "guardian" RNAs, also called non-coding RNAs".

The article also points out that the epitranscriptome could be altered in some human diseases, while alterations in genes responsible for cancer are also being discovered. "It will definitely be an exciting research stage for this and the next generation of scientists," concludes the researcher.
-end-


IDIBELL-Bellvitge Biomedical Research Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.