Nav: Home

Method speeds testing of new networking protocols

March 22, 2017

The transmission control protocol, or TCP, which manages traffic on the Internet, was first proposed in 1974. Some version of TCP still regulates data transfer in most major data centers, the huge warehouses of servers maintained by popular websites.

That's not because TCP is perfect or because computer scientists have had trouble coming up with possible alternatives; it's because those alternatives are too hard to test. The routers in data center networks have their traffic management protocols hardwired into them. Testing a new protocol means replacing the existing network hardware with either reconfigurable chips, which are labor-intensive to program, or software-controlled routers, which are so slow that they render large-scale testing impractical.

At the Usenix Symposium on Networked Systems Design and Implementation later this month, researchers from MIT's Computer Science and Artificial Intelligence Laboratory will present a system for testing new traffic management protocols that requires no alteration to network hardware but still works at realistic speeds -- 20 times as fast as networks of software-controlled routers.

The system maintains a compact, efficient computational model of a network running the new protocol, with virtual data packets that bounce around among virtual routers. On the basis of the model, it schedules transmissions on the real network to produce the same traffic patterns. Researchers could thus run real web applications on the network servers and get an accurate sense of how the new protocol would affect their performance.

"The way it works is, when an endpoint wants to send a [data] packet, it first sends a request to this centralized emulator," says Amy Ousterhout, a graduate student in electrical engineering and computer science (EECS) and first author on the new paper. "The emulator emulates in software the scheme that you want to experiment with in your network. Then it tells the endpoint when to send the packet so that it will arrive at its destination as though it had traversed a network running the programmed scheme."

Ousterhout is joined on the paper by her advisor, Hari Balakrishnan, the Fujitsu Professor in Electrical Engineering and Computer Science; Jonathan Perry, a graduate student in EECS; and Petr Lapukhov of Facebook.

Traffic control

Each packet of data sent over a computer network has two parts: the header and the payload. The payload contains the data the recipient is interested in -- image data, audio data, text data, and so on. The header contains the sender's address, the recipient's address, and other information that routers and end users can use to manage transmissions.

When multiple packets reach a router at the same time, they're put into a queue and processed sequentially. With TCP, if the queue gets too long, subsequent packets are simply dropped; they never reach their recipients. When a sending computer realizes that its packets are being dropped, it cuts its transmission rate in half, then slowly ratchets it back up.

A better protocol might enable a router to flip bits in packet headers to let end users know that the network is congested, so they can throttle back transmission rates before packets get dropped. Or it might assign different types of packets different priorities, and keep the transmission rates up as long as the high-priority traffic is still getting through. These are the types of strategies that computer scientists are interested in testing out on real networks.

Speedy simulation

With the MIT researchers' new system, called Flexplane, the emulator, which models a network running the new protocol, uses only packets' header data, reducing its computational burden. In fact, it doesn't necessarily use all the header data -- just the fields that are relevant to implementing the new protocol.

When a server on the real network wants to transmit data, it sends a request to the emulator, which sends a dummy packet over a virtual network governed by the new protocol. When the dummy packet reaches its destination, the emulator tells the real server that it can go ahead and send its real packet.

If, while passing through the virtual network, a dummy packet has some of its header bits flipped, the real server flips the corresponding bits in the real packet before sending it. If a clogged router on the virtual network drops a dummy packet, the corresponding real packet is never sent. And if, on the virtual network, a higher-priority dummy packet reaches a router after a lower-priority packet but jumps ahead of it in the queue, then on the real network, the higher-priority packet is sent first.

The servers on the network thus see the same packets in the same sequence that they would if the real routers were running the new protocol. There's a slight delay between the first request issued by the first server and the first transmission instruction issued by the emulator. But thereafter, the servers issue packets at normal network speeds.

The ability to use real servers running real web applications offers a significant advantage over another popular technique for testing new network management schemes: software simulation, which generally uses statistical patterns to characterize the applications' behavior in a computationally efficient manner.
-end-
Additional background

ARCHIVE: Programmable network routers

ARCHIVE: Classroom contest yields publishable results

ARCHIVE: No-wait data centers

ARCHIVE: A faster Internet -- designed by computers?

Massachusetts Institute of Technology

Related Electrical Engineering Articles:

3D-printed plastics with high performance electrical circuits
Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures.
In and out with 10-minute electrical vehicle recharge
Electric vehicle owners may soon be able to pull into a fueling station, plug their car in, go to the restroom, get a cup of coffee and in 10 minutes, drive out with a fully charged battery, according to a team of engineers.
Electrical stimulation aids in spinal fusion
Spine surgeons in the U.S. perform more than 400,000 spinal fusions each year as a way to ease back pain and prevent vertebrae in the spine from wiggling around and doing more damage.
The effectiveness of electrical stimulation in producing spinal fusion
Researchers from The Johns Hopkins University School of Medicine performed a systematic review and meta-analysis of published data on the effect of electrical stimulation therapies on spinal fusion.
Fat pumps generate electrical power
A previously unknown electrical current develops in the body's cells when the vital fat pump function of the flippases transfers ('flips') lipids from the outer to the inner layer of the body's cell membranes.
UCI electrical engineering team develops 'beyond 5G' wireless transceiver
An end-to-end transmitter-receiver created by engineers in UCI's Nanoscale Communication Integrated Circuits Labs, is a 4.4-millimeter-square silicon chip that is capable of processing digital signals with significantly greater speed and energy efficiency because of its unique digital-analog architecture.
How electrical stimulation reorganizes the brain
Recordings of neural activity during therapeutic stimulation can be used to predict subsequent changes in brain connectivity, according to a study of epilepsy patients published in JNeurosci.
Electrical signals kick off flatworm regeneration
In a study publishing March 5 in Biophysical Journal, scientists report that electrical activity is the first known step in the tissue-regeneration process of planarian flatworms, starting before the earliest known genetic machinery kicks in and setting off the downstream activities of gene transcription needed to construct new heads or tails.
Electrical activity in prostate cancer cells
Experts from the universities of Bath and Seville have carried out a series of experiments with which, for the first time, they have been able to characterize the normal electrical activity in PC-3 prostate cancer cells in real time, with a resulting low-frequency electrical pattern between 0.1 and 10 Hertz.
Toward a secure electrical grid
Professor João Hespanha suggests a way to protect autonomous grids from potentially crippling GPS spoofing attacks.
More Electrical Engineering News and Electrical Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab