Nav: Home

Method speeds testing of new networking protocols

March 22, 2017

The transmission control protocol, or TCP, which manages traffic on the Internet, was first proposed in 1974. Some version of TCP still regulates data transfer in most major data centers, the huge warehouses of servers maintained by popular websites.

That's not because TCP is perfect or because computer scientists have had trouble coming up with possible alternatives; it's because those alternatives are too hard to test. The routers in data center networks have their traffic management protocols hardwired into them. Testing a new protocol means replacing the existing network hardware with either reconfigurable chips, which are labor-intensive to program, or software-controlled routers, which are so slow that they render large-scale testing impractical.

At the Usenix Symposium on Networked Systems Design and Implementation later this month, researchers from MIT's Computer Science and Artificial Intelligence Laboratory will present a system for testing new traffic management protocols that requires no alteration to network hardware but still works at realistic speeds -- 20 times as fast as networks of software-controlled routers.

The system maintains a compact, efficient computational model of a network running the new protocol, with virtual data packets that bounce around among virtual routers. On the basis of the model, it schedules transmissions on the real network to produce the same traffic patterns. Researchers could thus run real web applications on the network servers and get an accurate sense of how the new protocol would affect their performance.

"The way it works is, when an endpoint wants to send a [data] packet, it first sends a request to this centralized emulator," says Amy Ousterhout, a graduate student in electrical engineering and computer science (EECS) and first author on the new paper. "The emulator emulates in software the scheme that you want to experiment with in your network. Then it tells the endpoint when to send the packet so that it will arrive at its destination as though it had traversed a network running the programmed scheme."

Ousterhout is joined on the paper by her advisor, Hari Balakrishnan, the Fujitsu Professor in Electrical Engineering and Computer Science; Jonathan Perry, a graduate student in EECS; and Petr Lapukhov of Facebook.

Traffic control

Each packet of data sent over a computer network has two parts: the header and the payload. The payload contains the data the recipient is interested in -- image data, audio data, text data, and so on. The header contains the sender's address, the recipient's address, and other information that routers and end users can use to manage transmissions.

When multiple packets reach a router at the same time, they're put into a queue and processed sequentially. With TCP, if the queue gets too long, subsequent packets are simply dropped; they never reach their recipients. When a sending computer realizes that its packets are being dropped, it cuts its transmission rate in half, then slowly ratchets it back up.

A better protocol might enable a router to flip bits in packet headers to let end users know that the network is congested, so they can throttle back transmission rates before packets get dropped. Or it might assign different types of packets different priorities, and keep the transmission rates up as long as the high-priority traffic is still getting through. These are the types of strategies that computer scientists are interested in testing out on real networks.

Speedy simulation

With the MIT researchers' new system, called Flexplane, the emulator, which models a network running the new protocol, uses only packets' header data, reducing its computational burden. In fact, it doesn't necessarily use all the header data -- just the fields that are relevant to implementing the new protocol.

When a server on the real network wants to transmit data, it sends a request to the emulator, which sends a dummy packet over a virtual network governed by the new protocol. When the dummy packet reaches its destination, the emulator tells the real server that it can go ahead and send its real packet.

If, while passing through the virtual network, a dummy packet has some of its header bits flipped, the real server flips the corresponding bits in the real packet before sending it. If a clogged router on the virtual network drops a dummy packet, the corresponding real packet is never sent. And if, on the virtual network, a higher-priority dummy packet reaches a router after a lower-priority packet but jumps ahead of it in the queue, then on the real network, the higher-priority packet is sent first.

The servers on the network thus see the same packets in the same sequence that they would if the real routers were running the new protocol. There's a slight delay between the first request issued by the first server and the first transmission instruction issued by the emulator. But thereafter, the servers issue packets at normal network speeds.

The ability to use real servers running real web applications offers a significant advantage over another popular technique for testing new network management schemes: software simulation, which generally uses statistical patterns to characterize the applications' behavior in a computationally efficient manner.
Additional background

ARCHIVE: Programmable network routers

ARCHIVE: Classroom contest yields publishable results

ARCHIVE: No-wait data centers

ARCHIVE: A faster Internet -- designed by computers?

Massachusetts Institute of Technology

Related Electrical Engineering Articles:

Modeling the rhythmic electrical activities of the brain
Researchers studying the brain have long been interested in its neural oscillations, the rhythmic electrical activity that plays an important role in the transmission of information within the brain's neural circuits.
UTA electrical engineering professor earns society's highest honor
J.-C. Chiao, a University of Texas at Arlington electrical engineering professor, has been named a Fellow of SPIE, the international society for optics and photonics.
UTA electrical engineering professor is named an IEEE Fellow
Qilian Liang, a professor in the Electrical Engineering Department at The University of Texas at Arlington, has been named a Fellow of the Institute of Electrical and Electronics Engineers.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
New electrical energy storage material shows its power
A new material developed by Northwestern University chemist William Dichtel and his team could one day speed up the charging process of electric cars and help increase their driving range.
Leaving the electrical grid in the Upper Peninsula
While Michigan's Upper Peninsula is not the sunniest place in the world, solar energy is viable in the region.
Electrical brain stimulation enhances creativity, researchers say
Safe levels of electrical stimulation can enhance your capacity to think more creatively, according to a new study by Georgetown researchers.
Questions over safety of whole body electrical stimulation
It's time to regulate the use of whole body electrical stimulation, argue doctors in The BMJ today, after treating several people for muscle damage at their hospital.
UTA electrical engineering professor elected Fellow of the Royal Society of Chemistry
Samir Iqbal, a University of Texas at Arlington associate professor of electrical engineering at The University of Texas at Arlington, has been named a Fellow of the prestigious Royal Society of Chemistry, the United Kingdom-based association representing more than 50,000 the world's leading chemical scientists.
Using electrical signals to train the heart's muscle cells
Columbia Engineering researchers have shown, for the first time, that electrical stimulation of human heart muscle cells engineered from human stem cells aids their development and function.

Related Electrical Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...