Nav: Home

Scientists identify brain circuit that drives pleasure-inducing behavior

March 22, 2017

CAMBRIDGE, MA -- Scientists have long believed that the central amygdala, a structure located deep within the brain, is linked with fear and responses to unpleasant events.

However, a team of MIT neuroscientists has now discovered a circuit in this structure that responds to rewarding events. In a study of mice, activating this circuit with certain stimuli made the animals seek those stimuli further. The researchers also found a circuit that controls responses to fearful events, but most of the neurons in the central amygdala are involved in the reward circuit, they report.

"It's surprising that positive-behavior-promoting subsets are so abundant, which is contrary to what many people in the field have been thinking," says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience and director of the RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory.

Tonegawa is the senior author of the study, which appears in the March 22 issue of the journal Neuron. The paper's lead authors are graduate students Joshua Kim and Xiangyu Zhang.

Driving behavior

The paper builds on a study published last year in which Tonegawa's lab identified two distinct populations of neurons in a different part of the amygdala, known as the basolateral amygdala (BLA). These two populations are genetically programmed to encode either fearful or happy memories.

In that study, the researchers found that the neurons encoding positive and negative memories relay information to different parts of the central amygdala. In their new work, they set out to further clarify the connections from the two BLA populations to the central amygdala, and to determine the functions of the central amygdala cells that receive information from the BLA.

First, the researchers analyzed the genetic profiles of the central amygdala neurons and divided them into seven groups based on the genetic markers they express and their anatomical location. They then used optogenetics, a technique that allowed them to control neuron activity with light, to investigate the functions of each population.

The researchers found that five of these populations stimulate reward-related behavior: When the mice were exposed to light, the mice repeatedly sought more light exposure because these neurons were driving a reward circuit. These same populations all receive input from the positive emotion cells in the BLA.

Another population of neurons underlies fear-related innate and memory behaviors, and the last population was not required for either fear- or reward-related behavior.

This finding contradicts the consensus that the central amygdala is involved primarily in fear-related behavior, the researchers say.

"Classically people have generalized the central amygdala as a fear-related structure. They think it's involved in anxiety and fear-related responses," Kim says. "However, it looks like the structure as a whole mainly seems to participate in appetitive behaviors."

The researchers cannot rule out the possibility that some yet-to-be-discovered cells in the central amygdala control negative behavior, they say. "However, the cells that we have identified so far represent more than 90 percent of the central amygdala," Tonegawa says. "If there are some other cells for negative behavior, it's a small fraction."

Surprising circuits

In another surprising finding, the researchers discovered that the fear-linked neurons they identified in the central amygdala do not send messages directly to the part of the brain that is believed to receive fear-related input from the central amygdala. This part of the brain, the periaqueductal gray (PAG), is located in the brainstem and plays a role in responding to pain, stress, and external threats.

Still unknown is where those central amygdala cells send their output, and whether it eventually gets to the PAG after stopping somewhere else. Tonegawa's lab is now trying to trace these circuits further to find out where they go.

The researchers are also studying the role of BLA neurons in fear extinction, which is the process of rewriting fearful memories so that they are associated with more positive feelings. This approach is often used to treat disorders such as depression and posttraumatic stress disorder.
-end-
The research was funded by the National Institutes of Health, the RIKEN Brain Science Institute, the Howard Hughes Medical Institute, and the JPB Foundation.

Massachusetts Institute of Technology

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab