Nav: Home

Epigenetic alteration a promising new drug target for heroin use disorder

March 22, 2017

Heroin use is associated with excessive histone acetylation, an epigenetic process that regulates gene expression, and more years of drug use correlate with higher levels of hyperacetylation, according to research conducted at The Icahn School of Medicine at Mount Sinai and published in the journal Biological Psychiatry. The study provides the first direct evidence of opiate-related epigenetic alterations in the human brain, indicating that the drug alters accessibility to portions of DNA to be either open or closed, thereby controlling whether genes implicated in addiction are switched on or off.

The Mount Sinai study focuses on epigenetics, the study of changes in the action of human genes caused, not by changes in DNA code we inherit from our parents, but instead by molecules that regulate when, where, and to what degree our genetic material is turned on and off. Histone acetylation of DNA-linked proteins is an essential process for gene regulation by which an acetyl functional group is transferred from one molecule to another, thereby activating gene expression.

To uncover the molecular underpinnings of heroin addiction, the Mount Sinai study team focused on the striatum, a brain region implicated in drug addiction because of its central role in habit formation and goal-directed behavior. Studying postmortem human tissue from 48 heroin users and 37 controls, they found acetylation changes at genes that regulate the function of glutamate, a neurotransmitter that regulates the drug reward system and controls drug-seeking behavior. Specifically, changes were identified at the glutamate receptor gene GRIA1, which has previously been implicated in drug use.

"We hypothesized that the epigenetic impairments uncovered in our study reflect changes that would increase accessibility to DNA that is required to enhance gene transcription that subsequently plays an important role in addiction behavior," says Yasmin Hurd, PhD, Professor of Psychiatry and Neuroscience at the Icahn School of Medicine at Mount Sinai and Director of The Center for Addictive Disorders at the Mount Sinai Behavioral Health System, who led the study. "Because epigenetic impairments are physical alterations to the DNA that do not change the sequence of a gene, they have the potential to be reversed, so our next step was to address this possibility."

Using a rat model of heroin addiction, researchers allowed rats to self-administer heroin and observed the same hyperacetylation alterations that were found in the postmortem human brains. The study team then treated the heroin-addicted rats with JQ1, a compound originally developed against cancer pathology, which inhibits the readout of acetylated epigenetic proteins thereby reducing accessibility to the DNA that was previously induced by heroin. The drug reduced heroin self-administration among study rats. Importantly, JQ1 also reduced drug-seeking behavior after abstinence from heroin, suggesting it might be beneficial for long-term heroin users.

"Our findings suggest that JQ1 and similar compounds might be promising therapeutic tools for heroin use disorder," says Dr. Hurd. "Furthermore, the animal model we created that displayed analogous epigenetic impairments related to heroin use will be useful for future studies looking to identify addiction-related changes that translate to the human brain."
-end-
Researchers from Semmelweis University in Budapest, Hungary, contributed to this study.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services -- from community-based facilities to tertiary and quaternary care.

The System includes approximately 7,100 primary and specialty care physicians; 12 joint-venture ambulatory surgery centers; more than 140 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. Physicians are affiliated with the renowned Icahn School of Medicine at Mount Sinai, which is ranked among the highest in the nation in National Institutes of Health funding per investigator. The Mount Sinai Hospital is in the "Honor Roll" of best hospitals in America, ranked No. 15 nationally in the 2016-2017 "Best Hospitals" issue of U.S. News & World Report. The Mount Sinai Hospital is also ranked as one of the nation's top 20 hospitals in Geriatrics, Gastroenterology/GI Surgery, Cardiology/Heart Surgery, Diabetes/Endocrinology, Nephrology, Neurology/Neurosurgery, and Ear, Nose & Throat, and is in the top 50 in four other specialties. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 10 nationally for Ophthalmology, while Mount Sinai Beth Israel, Mount Sinai St. Luke's, and Mount Sinai West are ranked regionally. Mount Sinai's Kravis Children's Hospital is ranked in seven out of ten pediatric specialties by U.S. News & World Report in "Best Children's Hospitals."

For more information, visit http://www.mountsinai.org/, or find Mount Sinai on Facebook, Twitter and YouTube.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...