Nav: Home

UC researchers help map future of precision medicine in Parkinson's disease

March 22, 2017

CINCINNATI -- Two landmark publications with one or more co-authors from the University of Cincinnati Gardner Neuroscience Institute outline a transformative approach to defining, studying and treating Parkinson's disease. Rather than approaching Parkinson's disease as a single entity, the international cadre of researchers advocates targeting therapies to distinct "nodes or clusters" of patients based on specific symptoms or molecular features of their disease.

Alberto Espay, MD, associate professor of neurology at the UC College of Medicine and director of the James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, is lead author of the publications, which recently appeared online in the journals Nature Reviews Neurology and Movement Disorders.

"The time has come to ask what we should be doing differently," Espay says. "Medical science has made a global investment of $23 billion in therapies with the promise to slow down the progression of Parkinson's disease, and the 17 completed phase III clinical trials have yielded little more than disappointment. We need to ask whether the growing number of failed trials might be explained by our single-target and single-disease approach to drug development."

Espay and his colleagues theorize that Parkinson's is not one disease but rather several diseases when considered from genetic and molecular perspectives. They acknowledge that viewing Parkinson's as a single disorder that predominantly involves dopamine-neuron degeneration has been useful in the development of treatments for symptoms, such as tremor and unstable walking, that touch the vast majority of patients. At the same time, this view has yet to deliver a therapy that is effective in slowing, modifying or curing Parkinson's. One important reason, Espay says, could be that promising molecular therapies have been tested in large clinical trials of people who share the diagnosis of Parkinson's, but not to the specific disease subtype most likely to benefit.

The researchers advocate a "precision medicine" approach that is rooted in systems biology, an inter-disciplinary study that focuses on the complex interactions of biological systems.

"Looking at the disease from a systems biology perspective allows us to recognize that our patients can be divided into subtypes based on genetic, biological and molecular abnormalities," Espay says. "As a result, they will respond differently to different therapies."

Neurologists have long observed the many faces of Parkinson's in their patients. Some progress rapidly in their disease, some slowly. Some develop dementia relatively early, while others do not.

Tests have also revealed that patients develop deposits of alpha-synuclein, a protein, to varying degrees in the brain, colon, heart, skin, and olfactory bulb. But while these deposits have been thought to be common denominators in most individuals with Parkinson's, they may represent byproducts of a range of biological abnormalities and may not be the best targets of therapy. "Chasing this tail could prove an elusive target," Espay says.

Toward an Ideal Set of Biomarkers

Espay and his colleagues say the field must work to develop an ideal set of biomarkers. Their sobering conclusion comes after an investment of $45 million by the Michael J. Fox Foundation in the Parkinson's Progression Markers Initiative (PPMI). Espay, the site leader for Cincinnati's portion of the 33-site study, had hoped the effort would help researchers discover biomarkers that would pinpoint underlying disease processes.

The ideal approach, Espay and his co-authors write, would start with "an assessment of biological processes" in large populations of aging individuals. The assessments would capture brain scans, genetic profiles and other biological measurements of healthy and unhealthy individuals over time. Abnormal signals within each of these biological measurements would then be traced to the group of people from which they emerge. In so doing, the field would develop "unbiased biomarkers" that drive the creation of specific disease subtypes.

"This process is the reverse of what we have today, with biomarkers being validated by anchoring them to the patient's observable clinical features, or phenotypes," Espay says.

Espay has likened the situation to an earlier period in oncology, when researchers sought "the cure for cancer." Over a period of decades, cancer researchers evolved away from that blanket focus to an understanding of cancer's profound complexity. They learned to assess a cancer's molecular profile and to target its unique mutation or vulnerability. In so doing they ushered in the age of precision medicine -- the matching of drugs to disease subtypes.

"The neurologist of the future would look very much like the oncologist of the present," Espay says. "The diagnosis of Parkinson's disease will be complete only when a biomarker profiling is capable of identifying the molecular subtypes of disease and suggest a disease-modifying treatment to apply."
-end-
Co-authors of the Nature Reviews publication are Patrik Brundin, MD, PhD, of the Van Andel Research Institute in Grand Rapids, Michigan, and Anthony Lang, MD, of the University of Toronto. Co-authors of the Movement Disorders article include Aristide Merola, MD, PhD, assistant professor of neurology and a member of the UC Gardner Center, and Daniel Woo, MD, professor of neurology and a member of the UC Comprehensive Stroke Center.

Espay and co-investigator Hilary Perez, PhD, clinical instructor and research coordinator at the Gardner Center, will lead UC's future efforts in biomarker development in collaboration with the Parkinson Study Group, the largest not-for-profit scientific network of Parkinson centers in North America.

University of Cincinnati Academic Health Center

Related Biomarkers Articles:

Two biomarkers appear to predict course of IPF
Two T cell biomarkers appear to predict the survival trajectory of patients with idiopathic pulmonary fibrosis (IPF), a lung disease that has a varied, but ultimately devastating, impact on patients, according to new research presented at the ATS 2017 International Conference.
Detecting blood clot risk using biomarkers
Researchers at Boston Medical Center (BMC) and Boston University School of Medicine (BUSM) aim to increase survival rates among these patients by identifying new and validating existing biomarkers.
Measuring pain: SLU scientist tests possible biomarkers
A Saint Louis University researcher will leverage her discovery of a pain pathway to determine if either of two key molecules can be used as biomarkers for pain associated with four debilitating health conditions: chemotherapy-induced peripheral neuropathy (CIPN), endometriosis, interstitial cystitis and vulvodynia.
Researchers find autism biomarkers in infancy
By using magnetic resonance imaging (MRI) to study the brains of infants who have older siblings with autism, scientists were able to correctly identify 80 percent of the babies who would be subsequently diagnosed with autism at 2 years of age.
Serum micoRNAs may serve as biomarkers for multiple sclerosis
Serum micoRNAs may serve as biomarkers for multiple sclerosis.
Investigating kidney biomarkers to track lupus
To try to better understand how the disease begins and progresses, researchers at the University of Michigan investigated whether kidney biomarkers would signal lupus progression and signs of complications.
Stanford study identifies new biomarkers for Huntington's disease
Researchers at Stanford University School of Medicine have identified several new biological markers to measure the progression of the inherited neurodegenerative disorder Huntington's disease.
Biomarkers may help better predict who will have a stroke
People with high levels of four biomarkers in the blood may be more likely to develop a stroke than people with low levels of the biomarkers, according to a study published in the Aug.
Research team discovers two biomarkers that contribute to spine osteoarthritis
A research team at the Krembil Research Institute has discovered a pair of tissue biomarkers that directly contribute to the harmful joint degeneration associated with spine osteoarthritis.
Discovery of biomarkers for the prognosis of chronic kidney disease
Currently, there is no effective method to predict the prognosis of chronic kidney disease (CKD) patients.

Related Biomarkers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.