Nav: Home

Caught on camera -- chemical reactions 'filmed' at the single-molecule level

March 22, 2017

Scientists have succeeded in 'filming' inter-molecular chemical reactions - using the electron beam of a transmission electron microscope (TEM) as a stop-frame imaging tool. They have also discovered that the electron beam can be simultaneously tuned to stimulate specific chemical reactions by using it as a source of energy as well as an imaging tool. To find out more watch the video. High and web images available here.

This research - which shows chemical reactions happening in real time at one hundred-millionth of a centimeter - has the potential to revolutionise the study and development of new materials. It could help answer some of the most fundamental and challenging questions of chemical science; such as how molecules react with each other at the atomistic level; what drives formation of one product instead of another; as well as aid the discovery of brand new chemical reactions.

The multi-national team of experts from the UK, Germany and Russia, was led by Andrei Khlobystov, a Professor of Nanomaterials and Director of The University of Nottingham's Nanoscale and Microscale Research Centre. The study: 'Stop-frame filming and discovery of reactions at the single-molecule level by transmission electron microscopy' has been published in ACS Nano, a flagship nanoscience and nanotechnology journal and selected as ACS Editor's Choice due to its potential for broad public interest.

Professor Khlobystov said: "This is a significant scientific breakthrough. We have transformed the way we use TEM - from taking still images to a tool for filming and stimulating chemical reactions. It is the first time we have been able to watch chemical reactions at this level and observe the fate of molecules as the chemical reactions take place - from the starting molecules all the way through to the product."

The research was carried out by experts in synthetic and theoretical chemistry, materials and electron microscopy and builds on Professor Khlobystov's concept of carbon nano test tubes (World's tiniest test tubes, Guinness Book of World Records 2005), where the nanotube acts as a container for molecules. His pioneering work on carbon nano-containers and nano-reactors is already leading to new ways of directing molecular assembly and studying chemical reactions.

The UK research was carried out in collaboration with Elena Besley, a Professor of Theoretical Computation Chemistry and her team of researchers working in the Computational Nanoscience Group at The University of Nottingham.

Professor Besley said: "Delving into the tiniest chemical building blocks of matter, our study harnesses the 'observer effect' and establishes an entirely new methodology for studying chemical reactions. We demonstrate that the electron beam, simultaneously acting as an imaging probe and a source of energy to drive chemical transformations, offers a new tool for studying the chemical reactions of individual molecules with atomic resolution, which is vital for the discovery of new reaction mechanisms and more efficient future synthesis."

Synthesis and preparation of new materials

There are still many problems in synthesis and preparation of materials and we need to understand the processes that create them, how exactly molecules react, how the chemical bonds break and form.

Professor Khlobystov said: "We named our method ChemTEM because it is the most direct way of studying chemical reactions: the electron beam delivers well-defined amounts of energy directly to the atoms within the molecule and thus triggers a chemical reaction, whilst continuously imaging the molecular transformations, frame-by-frame in direct space and real time. We can discover new chemical reactions and make bespoke chemical structures by playing with the conditions of the TEM - for instance the energy of the electron beam.

"We are now able to watch as individual molecules join together to form nanoribbons of graphene and polymers. We can then steer the reaction in the direction we want to form the material we want, and watch this happen in real time. For instance, we are already looking at the next generation of complex two-dimensional molecular materials for electronic applications beyond graphene."

Embracing the 'observer effect'

In microscopy much effort is invested in reducing the impact of light or electron beam - the so-called observer effect' - on the sample to ensure that the images represent truly pristine structures, unaffected by the process of measurement.

The research team has employed the 'observer effect' to turn TEM into an imaging tool and a source of energy to drive chemical reactions.

The electron beam penetrates the atomically thin walls of carbon nanotubes and enables time-resolved imaging of the reactions at the single-atom level. Activated by the electron beam, the energy and dose rate which can be set precisely, chemical transformations of molecules take place.
-end-
The NMRC

The UK research was performed at the state of the art Nanoscale and Microscale Research Centre (NMRC). The vision of the centre is to become a world-leading facility for the characterisation and analysis of molecular materials at the nano and microscale. With a unique suite of 20 major instruments the centre is staffed by experts with medical, scientific and engineering backgrounds. They are currently working on a wide range of research from cancer cells and 3D printed medical implants to semiconductors and solar cells.

University of Nottingham

Related Chemical Reactions Articles:

Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.
Quantum entanglement in chemical reactions? Now there's a way to find out
For the first time, scientists have developed a practical way to measure quantum entanglement in chemical reactions.
Driving chemical reactions with light
How can chemical reactions be triggered by light, following the example of photosynthesis in nature?
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
Boosting solid state chemical reactions
Adding olefin enables efficient solvent-free cross-coupling reactions, leading to environmentally friendly syntheses of a wide range of organic materials.
Researchers monitor electron behavior during chemical reactions for the first time
In a recent publication in Science, researchers at the University of Paderborn and the Fritz Haber Institute Berlin demonstrated their ability to observe electrons' movements during a chemical reaction.
Physicists edge closer to controlling chemical reactions
A team of researchers has developed an algorithm for predicting the effect of an external electromagnetic field on the state of complex molecules.
Why a stream of plasma makes chemical reactions more efficient
A whiff of plasma, when combined with a nanosized catalyst, can cause chemical reactions to proceed faster, more selectively, at lower temperatures, or at lower voltages than without plasma.
Controlling chemical reactions near absolute zero
EPFL chemists have demonstrated complete experimental control over a chemical reaction just above absolute zero.
University of Toronto chemists advance ability to control chemical reactions
University of Toronto chemists led by Nobel Prize-winning researcher John Polanyi have found a way to select the outcome of chemical reaction by employing an elusive and long-sought factor known as the 'impact parameter' -- the miss-distance by which a reagent molecule misses a target molecule, thereby altering the products of chemical reaction.
More Chemical Reactions News and Chemical Reactions Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab