Nav: Home

How do metals interact with DNA?

March 22, 2017

To fight cancer, every year thousands of chemical substances are screened for their potential effects on tumor cells. Once a compound able to inhibit cancer cell growth is found, it still takes several years of research until the drug gets approved and can be applied to patients. The elucidation of the different pathways that a drug takes within human cells, in order to predict possible adverse effects, usually requires elaborate and time-consuming experiments.

The teams of Leticia González from the Faculty of Chemistry of the University of Vienna and Jacinto Sá from Uppsala University have developed a protocol that is able to detect with high precision how, where, and why a drug interacts with the biomolecules of an organism. "In a first step, using high-energy X-ray radiation from the Swiss Light Source third-generation-synchrotron, the favorite binding location of the drug inside the cell is determined", González explains. In a second step, advanced theoretical simulations, partially done on the supercomputer "Vienna Scientific Cluster", rationalize the preference of the potential medicament for that particular location.

The scientists have applied this protocol to the drug Pt103, which is known to have cytotoxic properties but an unknown mechanism of action. The compound Pt103, which belongs to the family of the so-called platinum-based drugs, showed promising antitumor activity in previous studies. Until recently, scientists could only speculate on the action of the compound with the DNA found inside a human or cancer cell. "We could show that the drug binds to a specific site of DNA, which was not expected based on previous research. And we could also explain why the drug attacks this particular site." says Juan J. Nogueira, a postdoctoral researcher in the group of González and co-author of the study. Using this newly gained knowledge one can better understand the functionality of the corresponding chemotherapeutic agent, which might lead to the development of new and more efficient drugs.
-end-
Publication in Journal of Physical Chemistry Letters

"Direct Determination of Metal Complexes Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics." Joanna Czapla-Masztafiak, Juan J. Nogueira, Ewelina Lipiec, Wojciech M. Kwiatek, Bayden R. Wood, Glen B. Deacon, Yves Kayser, Daniel L. A. Fernandes, Mariia V. Pavliuk, Jakub Szlachetko, Leticia González, and Jacinto Sá

The Journal of Physical Chemistry Letters 2017, 8, 805-811.

DOI: 10.1021/acs.jpclett.7b00070

University of Vienna

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Blueprint: How DNA Makes Us Who We Are (The MIT Press)
by Robert Plomin (Author)

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Native American DNA: Tribal Belonging and the False Promise of Genetic Science
by Kim TallBear (Author)

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
by David Reich (Author)

Dinosaur DNA: A Nonfiction Companion to the Films (Jurassic World)
by Marilyn Easton (Author)

Fundamentals of Forensic DNA Typing
by John M. Butler (Author)

Cosmic Serpent: DNA and the Origins of Knowledge
by Jeremy Narby (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#503 Postpartum Blues (Rebroadcast)
When a woman gives birth, it seems like everyone wants to know how the baby is doing. What does it weigh? Is it breathing right? Did it cry? But it turns out that, in the United States, we're not doing to great at asking how the mom, who just pushed something the size of a pot roast out of something the size of a Cheerio, is doing. This week we talk to anthropologist Kate Clancy about her postpartum experience and how it is becoming distressingly common, and we speak with Julie Wiebe about prolapse, what it is and how it's...