Nav: Home

WPI team grows heart tissue on spinach leaves

March 22, 2017

Worcester, Mass. - Researchers face a fundamental challenge as they seek to scale up human tissue regeneration from small lab samples to full-size tissues, bones, even whole organs to implant in people to treat disease or traumatic injuries: how to establish a vascular system that delivers blood deep into the developing tissue.

Current bioengineering techniques, including 3-D printing, can't fabricate the branching network of blood vessels down to the capillary scale that are required to deliver the oxygen, nutrients and essential molecules required for proper tissue growth. To solve this problem, a multidisciplinary research team at Worcester Polytechnic Institute (WPI), the University of Wisconsin-Madison, and Arkansas State University-Jonesboro have successfully turned to plants. They report their initial findings in the paper "Crossing kingdoms: Using decelluralized plants as perfusable tissue engineering scaffolds" published online in advance of the May 2017 issue of the journal Biomaterials.

"Plants and animals exploit fundamentally different approaches to transporting fluids, chemicals and macromolecules, yet there are surprising similarities in their vascular network structures," the authors wrote. "The development of decellularized plants for scaffolding opens up the potential for a new branch of science that investigates the mimicry between plant and animal."

In a series of experiments, the team cultured beating human heart cells on spinach leaves that were stripped of plant cells. They flowed fluids and microbeads similar in size to human blood cells through the spinach vasculature, and they seeded the spinach veins with human cells that line blood vessels. These proof-of-concept studies open the door to using multiple spinach leaves to grow layers of healthy heart muscle to treat heart attack patients.

Other decellularized plants could provide the framework for a wide range of tissue engineering technologies. "We have a lot more work to do, but so far this is very promising," said Glenn Gaudette, PhD, professor of biomedical engineering at WPI and corresponding author of the paper. "Adapting abundant plants that farmers have been cultivating for thousands of years for use in tissue engineering could solve a host of problems limiting the field."

In addition to Gaudette, the WPI research team includes Tanja Dominko, PhD, DVM, associate professor of biology and biotechnology, who studies molecular mechanisms of human cell development; Pamela Weathers, PhD, professor of biology and biotechnology, a plant biologist; and Marsha Rolle, PhD, associate professor of biomedical engineering, who focuses on vasculature tissue engineering. The collaborative team also includes human stem cell and plant biology researchers at Wisconsin and Arkansas. "This project speaks to the importance of interdisciplinary research," Gaudette said. "When you have people with different expertise coming at a problem from different perspectives, novel solutions can emerge."

The paper's first author is Joshua Gerslak, a graduate student in Gaudette's lab, who helped design and conduct the experiments, and who developed an effective process for removing plant cells from spinach leaves by flowing or "perfusing" a detergent solution through the leaves' veins. "I had done decellularization work on human hearts before and when I looked at the spinach leaf its stem reminded me of an aorta. So I thought, let's perfuse right through the stem," Gershlak said. "We weren't sure it would work, but it turned out to be pretty easy and replicable. It's working in many other plants."

When the plant cells are washed away what remains is a framework made primarily of cellulose, a natural substance that is not harmful to people. "Cellulose is biocompatible (and) has been used in a wide variety of regenerative medicine applications, such as cartilage tissue engineering, bone tissue engineering, and wound healing," the authors wrote.

In addition to spinach leaves, the team successfully removed cells from parsley, Artemesia annua (sweet wormwood), and peanut hairy roots. They expect the technique will work with many plant species that could be adapted for specialized tissue regeneration studies. "The spinach leaf might be better suited for a highly-vascularized tissue, like cardiac tissue, whereas the cylindrical hollow structure of the stem of Impatiens capensis (jewelweed) might better suit an arterial graft. Conversely, the vascular columns of wood might be useful in bone engineering due to their relative strength and geometries," the authors wrote.

Using plants as the basis for tissue engineering also has economic and environmental benefits. "By exploiting the benign chemistry of plant tissue scaffolds, we could address the many limitations and high costs of synthetic, complex composite materials. Plants can be easily grown using good agricultural practices and under controlled environments. By combining environmentally friendly plant tissue with perfusion-based decellularization, we have shown that there can be a sustainable solution for pre-vascularized tissue engineering scaffolds."

At WPI, the research continues along several lines, Gaudette said, with studies to optimize the decellularization process and further characterize how various human cell types grow while they are attached to, and are potentially nourished by, plant-based scaffolds. Also, engineering a secondary vascular network for the outflow of blood and fluids from human tissue will be explored. On April 7, 2017, Gershlak will present the technology and early results as an invited speaker at the National Academy of Inventors inaugural Student Innovation Showcase in Boston, where he will detail the work for more than 200 accomplished inventors and technology commercialization leaders.
-end-
About Worcester Polytechnic Institute

Founded in 1865 in Worcester, Mass., WPI is one of the nation's first engineering and technology universities. Its 14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, business, the social sciences, and the humanities and arts, leading to bachelor's, master's and doctoral degrees. WPI's talented faculty work with students on interdisciplinary research that seeks solutions to important and socially relevant problems in fields as diverse as the life sciences and bioengineering, energy, information security, materials processing, and robotics. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Projects Program. There are more than 40 WPI project centers throughout the Americas, Africa, Asia-Pacific, and Europe.

Worcester Polytechnic Institute

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...