Golden touch: Next-gen optical disk to solve data storage challenge

March 22, 2018

Scientists from Australia and China have drawn on the durable power of gold to demonstrate a new type of high-capacity optical disk that can hold data securely for more than 600 years.

The technology could offer a more cost-efficient and sustainable solution to the global data storage problem while enabling the critical pivot from Big Data to Long Data, opening up new realms of scientific discovery.

The recent explosion of Big Data and cloud storage has led to a parallel explosion in power-hungry data centres. These centres not only use up colossal amounts of energy - consuming about 3 per cent of the world's electricity supply - but largely rely on hard disk drives that have limited capacity (up to 2TB per disk) and lifespans (up to two years).

Now scientists from RMIT University in Melbourne, Australia, and Wuhan Institute of Technology, China, have used gold nanomaterials to demonstrate a next-generation optical disk with up to 10TB capacity - a storage leap of 400 per cent - and a six-century lifespan.

VIEW AND EMBED THE VIDEO:https://youtu.be/DylDNsqdAmI

The technology could radically improve the energy efficiency of data centres - using 1000 times less power than a hard disk centre - by requiring far less cooling and doing away with the energy-intensive task of data migration every two years. Optical disks are also inherently far more secure than hard disks.

Lead investigator, RMIT University's Distinguished Professor Min Gu, said the research paves the way for the development of optical data centres to address both the world's data storage challenge and support the coming Long Data revolution.

"All the data we're generating in the Big Data era - over 2.5 quintillion bytes a day - has to be stored somewhere, but our current storage technologies were developed in different times," Gu said.

"While optical technology can expand capacity, the most advanced optical disks developed so far have only 50-year lifespans.

"Our technique can create an optical disk with the largest capacity of any optical technology developed to date and our tests have shown it will last over half a millennium.

"While there is further work needed to optimise the technology - and we're keen to partner with industrial collaborators to drive the research forward - we know this technique is suitable for mass production of optical disks so the potential is staggering."

The world is shifting from Big Data towards Long Data, which enables new insights to be discovered through the mining of massive datasets that capture changes in the real world over decades and centuries.

Lead author, Senior Research Fellow Dr Qiming Zhang from RMIT's School of Science, said the new technology could expand horizons for research by helping to advance the rise of Long Data.

"Long Data offers an unprecedented opportunity for new discoveries in almost every field - from astrophysics to biology, social science to business - but we can't unlock that potential without addressing the storage challenge," Zhang said.

"For example, to study the mutation of just one human family tree, 8 terabytes of data is required to analyse the genomes across 10 generations. In astronomy, the Square Kilometre Array (SKA) radio telescope produces 576 petabytes of raw data per hour.

"Meanwhile the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to 'map' the human brain is handling data measured in yottabytes, or one trillion terabytes.

"These enormous amounts of data have to last over generations to be meaningful. Developing storage devices with both high capacity and long lifespan is essential, so we can realise the impact that research using Long Data can make in the world."

The novel technique behind the technology - developed over five years - combines gold nanomaterials with a hybrid glass material that has outstanding mechanical strength.

The research progresses earlier groundbreaking work by Gu and his team that smashed through the seemingly unbreakable optical limit of blu-ray and enabled data to be stored across the full spectrum of visible light rays.

How it works

The researchers have demonstrated optical long data memory in a novel nanoplasmonic hybrid glass matrix, different to the conventional materials used in optical discs.

Glass is a highly durable material that can last up to 1000 years and can be used to hold data, but has limited storage capacity because of its inflexibility.

The team combined glass with an organic material, halving its lifespan but radically increasing capacity.

To create the nanoplasmonic hybrid glass matrix, gold nanorods were incorporated into a hybrid glass composite, known as organic modified ceramic.

The researchers chose gold because like glass, it is robust and highly durable. Gold nanoparticles allow information to be recorded in five dimensions - the three dimensions in space plus colour and polarisation.

The technique relies on a sol-gel process, which uses chemical precursors to produce ceramics and glasses with better purity and homogeneity than conventional processes.
-end-
The research was led by Gu and Zhang at RMIT's Laboratory of Artificial-Intelligence Nanophotonics and the RMIT node of Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), along with collaborators from the School of Materials Science and Engineering at Wuhan University of Technology and the Faculty of Engineering, Monash University.

The paper, "High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites" is published in Nature Communications (DOI 10.1038/s41467-018-03589-y).

RMIT University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.