Nav: Home

Generation of a stable biradical

March 22, 2018

Boron has a range of uses throughout everyday life, from laundry bleaches to heat-proof glass and ceramics. Chemists at Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, have a particular interest in the chemistry this element, and have been researching the fundamental properties of boron for years. These researchers have now succeeded in twisting molecules with multiple bonds between boron atoms, leading to unusually stable biradicals.

Biradicals are usually highly reactive molecules. They are generated in energetic processes such as combustion and are normally so short-lived that they are unable to be isolated or studied by traditional methods of chemical analysis.

The new biradicals prepared at the JMU are dramatically different, however: they are solid compounds and were found to be stable for weeks. "We now have model compounds in hand that we can study without having to rush", explains Prof. Holger Braunschweig from the Institute for Inorganic Chemistry. The results have been presented in the journal Nature Communications.

Twisting of boron-boron double bonds

For a long time, chemists have attempted to twist, distort and rupture double bonds between atoms - with only limited success. The JMU team has now made the dream of twisting a double bond by a full 90 degrees a reality.

The Würzburg researchers had originally expected to obtain diborenes from their reactions: the products should have had double bonds between their boron atoms, as would normally be the case. Instead, they obtained molecules where the double bond between the atoms was twisted by 90 degrees and thereby completely broken.

Biradicals in their electronic ground state

The result of the experiments was the synthesis of unusually stable biradicals. This is highly unusual: "When a molecule is twisted against its will, it usually becomes less stable, and also more reactive", explains Julian Böhnke, doctoral student at the JMU and first author of the publication in Nature Communications. "The stability of the molecules is due to them being biradicals in their electronic ground state, despite their two unpaired electrons", says Braunschweig. "This structure was completely unexpected."

Applications of the molecules are still far away, according to Prof. Braunschweig. If they could be installed into a polymeric material, their use in organic electronics could become a possibility. However, Braunschweig emphasises that "this is still a long way off". The next step for the JMU chemists is to test whether similarly stable biradicals can be prepared with double bonds between boron and carbon.

A success story of Research Training Group 2112

The study of the biradicals was particularly extensive and complex, involving sixteen researchers and three years of research. The main part of Julian Böhnke's doctoral thesis will be based on the topic. Böhnke is part of the Research Training Group (Graduiertenkolleg) 2112 (Molecular Biradicals: Structure, Properties and Reactivity), a research consortium headed by Prof. Ingo Fischer. The Research Training Group allows doctoral students to investigate the physical and chemical properties of biradicals in an interdisciplinary team.

Critical to the success of the study was the efficient collaboration with expert theoretical chemistry groups. Work by the teams of Profs. Bernd Engels and Roland Mitri? was essential in obtaining a thorough understanding of the bonding situations in the newly-prepared biradicals. Two other German research groups from Göttingen and Mülheim an der Ruhr were also integral parts of the team.
-end-


University of Würzburg

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.