Nav: Home

Designing a new material for improved ultrasound

March 22, 2018

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.

Piezoelectricity is the material property at the heart of medical ultrasound, sonar, active vibration control and many sensors and actuators. A piezoelectric material has the ability to mechanically deform when an electric voltage is applied or to generate electric charge when a mechanical force is applied.

Adding small amounts of a carefully selected rare earth material, samarium, to a high-performance piezoelectric ceramic called lead magnesium niobate-lead titanate (PMN-PT) dramatically increases its piezo performance, the researchers report in Nature Materials this week. This materials-by-design strategy will be useful in designing materials for other applications as well, the team believes.

"This is not the typical way to develop new materials," said the team's co-corresponding author, Long-Qing Chen, Donald W. Hamer Professor of Materials Science and Engineering, professor of mathematics, and professor of engineering science and mechanics, Penn State. "The majority of existing useful materials are discovered by trial-and-error experiments. But here we designed and synthesized a new piezoelectric ceramic guided by theory and simulations."

The team first analyzed the impact of adding various chemical dopants on the local structure of an existing ferroelectric ceramic. They were then able to reduce the pool of effective dopants by comparing the measured dielectric losses with the signatures obtained from phase-field simulations. After the screening of dopants, they then focused on optimizing the process and composition to achieve the ultrahigh piezoelectricity.

"This work is based on an understanding of the origin of ultrahigh piezoelectricity in the ferroelectric crystals that were developed 30 years ago. Our new understanding suggested that local structure heterogeneity plays an important role in piezoelectricity in ferroelectrics, which also can be extended to other functionalities," said co-corresponding author Shujun Zhang, a professor of materials science formerly at Penn State and now at the University of Wollongong in Australia.

Local structure heterogeneity refers to nanoscale-size structural distortions within a host material created by doping a small amount of chemical species, in this case doping samarium in PMN-PT ceramics, as a way to modify the thermodynamic energy landscape of the material, which in turn increases the dielectric properties -- the ability of a material to respond to an electrostatic field -- and the piezoelectric effect.

"This material is a good choice to use in transducers, such as those used in medical ultrasound," said lead author Fei Li, a research associate at Penn State. "We already have devices made from our material by a group at the University of Southern California."

That device, called a needle transducer, uses a submillimeter piezoelectric element of the Penn State material, fitted into a standard needle or catheter, in order to perform minimally invasive procedures, to image inside the body or to guide precision surgery inside the body. The device has better performance than existing devices with the same dimensions, Li said.

Penn State has filed a provisional patent on the material.
-end-
Additional authors are Dabin Lin and ChunChun Li, visiting scholars in Penn State's Materials Research Institute; Zhuo Xu, a professor at Xi'an Jiaotong University, China; and Australian co-authors Zibin Chen, Zhenxiang Cheng, Jianli Wang, Qianwei Huang and Xiaozhou Liao. Thomas Shrout, emeritus professor in the Materials Research Institute, designed the study along with Fei Li, Long-Qing Chen and Shujun Zhang. The Nature Materials paper is titled "Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design."

The U.S. Office of Naval Research Global, the U.S. Department of Energy, the National Science Foundation of China, and the Australian Research Council all supported this work.

Penn State

Related Piezoelectricity Articles:

2D oxide flakes pick up surprise electrical properties
Rice University researchers find evidence of piezoelectricity in lab-grown, two-dimensional flakes of molybdenum dioxide.
Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.
Scientists transform a BBQ lighter into a high-tech lab device
Researchers have devised a straightforward technique for building a laboratory device known as an electroporator -- which applies a jolt of electricity to temporarily open cell walls -- from inexpensive components, including a piezoelectric crystal taken from a butane lighter.
Mechanical force as a new way of starting chemical reactions
Researchers have shown mechanical force can start chemical reactions, making them cheaper, more broadly applicable, and more environmentally friendly than conventional methods.
Pushing 'print' on large-scale piezoelectric materials
A new, inexpensive method to 'print' large-scale sheets of two dimensional (2D) piezoelectric material offers tremendous opportunity for new piezo-sensors and energy harvesting.
Designing a new material for improved ultrasound
Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.
Electric textile lights a lamp when stretched
Working up a sweat from carrying a heavy load? That is when the textile works at its best.
A nanophenomenon that triggers the bone-repair process
Researchers at the Institut Català de Nanociència i Nanotecnologia have resolved one of the great unknowns in bone self-repair: how the cells responsible for forming new bone tissue are called into action.
Researchers generate electricity from low-cost biomaterial
Mobile phone speakers and motion detectors in cars and video games may soon be powered by electricity generated from low cost and sustainable biomaterials, according to research carried out at University of Limerick (UL), Ireland.
The piezoelectric effect of lysozyme was experimentally proved
A group of researchers from the University of Limerick and Ural Federal University received direct evidence of the piezoelectric effect of lysozyme in monoclinic and tetragonal aggregate films of lysozyme.
More Piezoelectricity News and Piezoelectricity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.