Nav: Home

Designing a new material for improved ultrasound

March 22, 2018

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.

Piezoelectricity is the material property at the heart of medical ultrasound, sonar, active vibration control and many sensors and actuators. A piezoelectric material has the ability to mechanically deform when an electric voltage is applied or to generate electric charge when a mechanical force is applied.

Adding small amounts of a carefully selected rare earth material, samarium, to a high-performance piezoelectric ceramic called lead magnesium niobate-lead titanate (PMN-PT) dramatically increases its piezo performance, the researchers report in Nature Materials this week. This materials-by-design strategy will be useful in designing materials for other applications as well, the team believes.

"This is not the typical way to develop new materials," said the team's co-corresponding author, Long-Qing Chen, Donald W. Hamer Professor of Materials Science and Engineering, professor of mathematics, and professor of engineering science and mechanics, Penn State. "The majority of existing useful materials are discovered by trial-and-error experiments. But here we designed and synthesized a new piezoelectric ceramic guided by theory and simulations."

The team first analyzed the impact of adding various chemical dopants on the local structure of an existing ferroelectric ceramic. They were then able to reduce the pool of effective dopants by comparing the measured dielectric losses with the signatures obtained from phase-field simulations. After the screening of dopants, they then focused on optimizing the process and composition to achieve the ultrahigh piezoelectricity.

"This work is based on an understanding of the origin of ultrahigh piezoelectricity in the ferroelectric crystals that were developed 30 years ago. Our new understanding suggested that local structure heterogeneity plays an important role in piezoelectricity in ferroelectrics, which also can be extended to other functionalities," said co-corresponding author Shujun Zhang, a professor of materials science formerly at Penn State and now at the University of Wollongong in Australia.

Local structure heterogeneity refers to nanoscale-size structural distortions within a host material created by doping a small amount of chemical species, in this case doping samarium in PMN-PT ceramics, as a way to modify the thermodynamic energy landscape of the material, which in turn increases the dielectric properties -- the ability of a material to respond to an electrostatic field -- and the piezoelectric effect.

"This material is a good choice to use in transducers, such as those used in medical ultrasound," said lead author Fei Li, a research associate at Penn State. "We already have devices made from our material by a group at the University of Southern California."

That device, called a needle transducer, uses a submillimeter piezoelectric element of the Penn State material, fitted into a standard needle or catheter, in order to perform minimally invasive procedures, to image inside the body or to guide precision surgery inside the body. The device has better performance than existing devices with the same dimensions, Li said.

Penn State has filed a provisional patent on the material.
-end-
Additional authors are Dabin Lin and ChunChun Li, visiting scholars in Penn State's Materials Research Institute; Zhuo Xu, a professor at Xi'an Jiaotong University, China; and Australian co-authors Zibin Chen, Zhenxiang Cheng, Jianli Wang, Qianwei Huang and Xiaozhou Liao. Thomas Shrout, emeritus professor in the Materials Research Institute, designed the study along with Fei Li, Long-Qing Chen and Shujun Zhang. The Nature Materials paper is titled "Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design."

The U.S. Office of Naval Research Global, the U.S. Department of Energy, the National Science Foundation of China, and the Australian Research Council all supported this work.

Penn State

Related Piezoelectricity Articles:

Pushing 'print' on large-scale piezoelectric materials
A new, inexpensive method to 'print' large-scale sheets of two dimensional (2D) piezoelectric material offers tremendous opportunity for new piezo-sensors and energy harvesting.
Designing a new material for improved ultrasound
Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.
Electric textile lights a lamp when stretched
Working up a sweat from carrying a heavy load? That is when the textile works at its best.
A nanophenomenon that triggers the bone-repair process
Researchers at the Institut Català de Nanociència i Nanotecnologia have resolved one of the great unknowns in bone self-repair: how the cells responsible for forming new bone tissue are called into action.
Researchers generate electricity from low-cost biomaterial
Mobile phone speakers and motion detectors in cars and video games may soon be powered by electricity generated from low cost and sustainable biomaterials, according to research carried out at University of Limerick (UL), Ireland.
The piezoelectric effect of lysozyme was experimentally proved
A group of researchers from the University of Limerick and Ural Federal University received direct evidence of the piezoelectric effect of lysozyme in monoclinic and tetragonal aggregate films of lysozyme.
Researchers get straight to the heart of piezoelectric tissues
While some studies have supported the idea that the walls of the aorta are piezoelectric or ferroelectric, the most recent research finds no evidence of these properties.
Irish scientists can now produce electricity from tears
A team of Irish scientists has discovered that applying pressure to a protein found in egg whites and tears can generate electricity.
A sea of spinning electrons
Picture two schools of fish swimming in clockwise and counterclockwise circles.
High-speed switching for ultrafast electromechanical switches and sensors
Scientists at Tokyo Institute of Technology, Nagoya University, Japan Synchrotron Radiation Research Institute (JASRI), National Institute for Materials Science (NIMS) and University of New South Wales have observed high-speed switching in Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses.
More Piezoelectricity News and Piezoelectricity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.