Which piece resembles your color perception for #theDress image?

March 22, 2018

A novel algorithm to simulate the color appearance of objects under chromatic illuminants has been proposed by Ichiro Kuriki of Tohoku University. The figure shows the result of applying this algorithm to #theDress image.

"#theDress image" refers to a photo that went viral on the Internet in February 2015, when viewers disagreed over the colors seen in the dress. The discussion revealed differences in human color perception and prompted studies in vision science.

How do we perceive colors? The details are not yet fully understood even for colors that we easily experience as we open our eyes. This is still one of the fundamental questions about our vision. Objects reflect light from an illuminant on their surfaces. The reflected light yields visual images after entering the eye. The light that falls on the retina changes with an illuminant. However, we scarcely perceive object color shifts. Although slight color shifts remain, the human visual system is able to compensate for illuminant changes.

Several groups have proposed algorithms to simulate the shifts in color appearance, but problems remain. One problem concerns achromatic points. Achromatic points are a series of rays that appear colorless (white to black through gray) under a given illuminant, and they work as the origin to evaluate hue and vividness. Therefore, an achromatic point is a keystone in the color appearance simulations, but previous models by other groups proposed complicated formulas to simulate the achromatic points.

Kuriki previously discovered a simple method to approximate these achromatic points under a chromatic illuminant. By combining this with a lightness adjustment, a simple algorithm was proposed to simulate the color appearance under a colored illuminant. The algorithm was applied to #theDress image, widely acknowledged for huge individual differences in color appearance.

Such variability is known to originate from differences in the estimated color and intensity of the illuminant falling on the dress. For example, if a viewer assumed a bluish dim illuminant, the white/gold would be perceived. The color and intensity of illuminant was systematically varied and successfully simulated differences in color appearance of #theDress under various assumptions (Figure); one of these pieces may resemble what you perceive from #theDress image.

The method is also capable of preserving the wider color range of the image at a darker part, even when adjusted for the lightness to simulate a dimmer situation. This is advantageous for high dynamic range displays, which recently became popular as commercial products like OLED screens.
-end-


Tohoku University

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.